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ABSTRACT

Deep learning models rely on highly optimized tensor libraries for
efficient inference on heterogeneous hardware. Current deep com-
pilers typically predetermine layouts of tensors and then optimize
loops of operators. However, such unidirectional and one-off work-
flow strictly separates graph-level optimization and operator-level
optimization into different system layers, missing opportunities for
unified tuning.

This paper proposes ALT, a compiler that performs joint graph-
and operator-level optimizations for deep models. ALT provides
a generic transformation module to manipulate layouts and loops
with easy-to-use primitive functions. ALT further integrates an
auto-tuning module that jointly optimizes graph-level data layouts
and operator-level loops while guaranteeing efficiency. Experimen-
tal results show that ALT significantly outperforms state-of-the-art
compilers (e.g., Ansor) in terms of both single operator performance
(e.g., 1.5X speedup on average) and end-to-end inference perfor-
mance (e.g., 1.4X speedup on average).

1 INTRODUCTION

Deep learning has become one of the essential building blocks
for emerging applications, such as machine translation and au-
tonomous driving systems. To provide ubiquitous services, develop-
ers craft high-performance programs supporting various tensor op-
erators (e.g., 2-D convolution and matrix multiplication) on different
hardware platforms (e.g., NVIDIA GPU and ARM CPU). However,
current vendor libraries (e.g., MKL-DNN [33] and cuDNN [12])
typically demand significant engineering effort on manual opti-
mization. Moreover, the hand-tuning approach can hardly catch up
with the fast evolution of deep learning techniques that constantly
introduce new tensor operators [32] and new hardware (e.g., neural

processing units). Therefore, researchers develop deep compilers
[6, 10, 39, 70, 81] to achieve automatic performance optimization
by auto-tuning and code generation techniques.

Two key categories of optimizations during compilation are
graph-level optimization and operator-level optimization. Graph-
level optimization represents operators as nodes and tensors as
edges in a computational graph and rewrites nodes or edges to ob-
tain a more efficient graph for inference. For instance, data layout
optimization rewrites the tensor storage format to improve memory
accessing performance [4, 14, 36, 56, 61, 63, 69]. Constant folding
[8, 49, 57] and common subexpression elimination [49, 57] removes
redundant nodes. Operator-level optimization, which mainly in-
volves loop optimization, transforms the nested loops in the source
code of each operator to schedule the execution of instructions
[7, 10, 26, 28, 55]. In this work, we focus on data layout optimization
and loop optimization because they yield significant performance
improvements and their tuning strongly correlates with operator
and hardware characteristics.

Unfortunately, existing deep compilers (e.g., TVM [10], Tensor
Comprehension [70], Tiramisu [6], AKG [81]) and auto-tuning tech-
niques (e.g., AutoTVM [11], NeoCPU [44], FlexTensor [89] and
Ansor [83]), fail to combine data layout and loop optimizations
effectively. These systems first predetermine tensor layouts either
manually or via setting a hyper-parameter from a predefined tem-
plate and then perform loop optimization based on these layouts.
There are three major limitations in this unidirectional and one-
off workflow. First, manual layout selection implies that only a
limited number of layout choices can be explored, hence prone
to be suboptimal. Second, altering the tensor layout demands the
time-consuming re-implementation of operators that access the
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tensor. Third, layout optimization and loop optimization are sepa-
rated into different system layers. Such strict boundary seriously
compromises the performance of the generated tensor programs.
For instance, we observe that optimizing loops based on the best
of three candidate layouts for 2-D convolutional operators can
improve the performance by 55.9% on average on the Intel CPU.
Moreover, the performance of a specific data layout is sensitive to
operator configurations (e.g., tensor shapes) and hardware. Thus
it is hard to determine data layouts for each workload without
feedback from loop optimization.

This paper proposes ALT, a deep compiler that jointly performs
graph-level and operator-level optimizations for deep models. The
design of ALT originates from the following insight. Graph-level
data layout optimization and operator-level loop optimization could
benefit from each other. In the meanwhile, the root cause of the
inability to perform cross-layer joint tuning is the coupling between
data storage and operator implementation in prior arts, such that
altering the data layout requires re-implementing operators. Such
high cost for changing layouts further leads to the unidirectional
and one-off optimization flow. Therefore, ALT abstracts layout
manipulation as easy-to-use primitive functions, such that the task
of re-implementing operators can be delegated to a compilation
pass without human interference. After reducing the cost, ALT
further incorporates layout and loop optimizations into a unified
auto-tuning framework, which breaks the boundary between graph-
and operator-level optimizations to open new opportunities.

It is not trivial to achieve our goals. We need to strike the fol-
lowing challenges.

Challenge 1: How can we eliminate the overhead of layout transforma-
tion? We discover two types of potential overhead when altering the
tensor layouts: layout-conversion overhead and fusion-conflict over-
head. First, operators along the data stream may require different
tensor layouts to reach their optimal performance. To transform the
layouts of tensors produced by other operators at runtime, directly
inserting conversion operators will incur extra overhead on data
movements. Second, altering the output tensor layout of an operator
needs the reconstruction of its loop nest. Such reconstruction may
inhibit the operator from being fused with its consumer, which is an
important loop optimization technique to improve inter-operator
data locality.

Challenge 2: How can we prevent inefficiency due to the search space
reconstruction during joint tuning? Changing the output layout of
an operator will induce the loop nest reconstruction, which will
further lead to the variation of the loop tuning space. For joint
tuning, such space variation prohibits a direct iterative exploration.
Otherwise, the points we have searched in the last iteration may
be invalid in the changing space. This leads to inefficient tuning
for most search methods, including genetic and learning-based
algorithms, since the accumulated knowledge of the search space
structure cannot be further exploited in the newly reconstructed
space.

Challenge 3: How can we improve efficiency given the search space
explosion with the combination of layout and loop tuning? Along
with the joint tuning, the combined search space will be tremen-
dously large, hence inefficient to explore directly. For example, in a
typical 2-D convolutional operator, the loop transformation space
can contain up to O(107) points for its seven nested loops. After

combining the layout transformation, the joint search space can be
at a scale of 0(10'?) considering three tensors, each of which fur-
ther involves four dimensions. Moreover, end-to-end optimization
is more challenging due to the inter-dependency of many operators
and tensors.

To eliminate the two types of overhead brought by layout trans-
formation, we propose a layout propagation mechanism. Suppose
we have chosen a different layout for the input tensor of an oper-
ator. We let the upstream operator, which is the producer of this
tensor, directly yield elements based on this new layout, hence no
conversion operator is required. To promote operator fusion, we
propagate the new layout downstream along the computational
graph to let the consumer operator trigger the same loop recon-
struction, which helps to align loop nests of multiple operators for
fusion. As such, we can safely transform data layouts with minimal
overhead, and without sabotaging loop optimization.

To alleviate the search space reconstruction issue in the co-
tuning, our solution is two folds. First, we divide the co-tuning into
two stages: joint stage and loop-only stage. The joint stage searches
for optimal tensor layouts, while the loop-only stage only performs
loop tuning with the searched layouts remaining unchanged. Sec-
ond, we propose a cross-exploration architecture for the joint stage,
rather than the direct exploration. For a new feasible layout, we
reconstruct the loop space and then perform multiple rounds of
loop optimization to assess the new layout. This design avoids inef-
ficient loop space reconstruction since the loop-only stage keeps
layouts unchanged. It also achieves the expected bidirectional and
unified tuning flow in the joint stage, because each candidate layout
is evaluated based on feedback from loop optimization through our
novel tuning architecture.

To avoid the search space explosion due to the combination of
layout and loop tuning, we prune the space at two levels. First, we
only build layout transformation spaces for tensors accessed by
complex operators. In this work, we take convolutions and general
matrix multiplication as complex operators, the performance of
which are layout sensitive. For other tensors, we further exploit the
layout propagation mechanism to propagate the searched layouts
onto them without more searching. Second, we identify a promising
subspace by tailoring a tuning template for each tensor accessed
by complex operators. These templates are constructed based on
our analysis of layout optimization considering both operator and
hardware characteristics.

By addressing these challenges, ALT achieves joint and efficient
graph-level data layout optimization and operator-level loop opti-
mization automatically.

We comprehensively evaluate ALT on Intel CPU, NVIDIA GPU,
and ARM CPU. Compared with state-of-the-art vendor libraries
(e.g., MKL-DNN [33], cuDNN [12], and XNNPACK [27]) and auto-
tuning frameworks (e.g., Ansor [83]), ALT achieves an average of
1.5% speedup in terms of single operator performance, and 1.4x
speedup in terms of end-to-end inference performance. Our evalua-
tion also shows that ALT can find data layouts that are not explored
in prior arts. Additionally, we have deployed ALT in production
environments for four months, boosting a broad spectrum of real
workloads (e.g., speech recognition and super resolution).

In summary, we make the following contributions:
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(a) C2D on Intel CPU. (b) C2D on NVIDIA GPU. (c) C2D on ARM CPU.

Figure 1: C2D latency with different data layouts on different hardware platforms.

o We reveal the necessity of joint graph- and operator-level opti-
mizations for deep learning compilation, and that the root cause
of the inefficient unidirectional and one-off optimization flow in
prior arts lies in the high cost of layout manipulation.

o We design an easy-to-use generic infrastructure that covers a
rich layout transformation space. It allows users to manipulate
layouts without soiling the hands for re-implementation, and
without extra overhead via the layout propagation mechanism
during end-to-end optimization.

o We devise a joint layout and loop auto-tuning framework. Via
effective space pruning and judicious exploration design, it not
only achieves a bidirectional and unified optimization flow but
also guarantees tuning efficiency.

e QOur extensive evaluation shows that, without human interfer-
ence, ALT improves performance over state-of-the-art baselines
significantly, which also verifies the effectiveness of the proposed
techniques.

2 BACKGROUND AND MOTIVATION

A deep compiler typically compiles a neural network with multi-
stage lowering and optimization. The compiler takes a model that
can be generated by other frameworks (e.g., TensorFlow [1]) as
input. It then resolves the model to a computational graph where
operators and tensors are represented as nodes and edges, respec-
tively.

Data layout optimization [4, 14, 36, 56, 61, 63, 69] is to rewrite
the tensor storage format (i.e., the attributes of an edge) to alleviate
memory accessing overhead for operators that access the tensor.
Thus, data layout optimization is often classified as graph-level
optimization. The storage format refers to the arrangement of tensor
dimensions. Take the 2-D convolution (C2D) operator as an example.
Popular data layouts for the output tensor of C2D include NOHW,
NHWO, and HWON, where N, O, H, W represent the batch size,
the number of output channels, the output tensor height, and the
output tensor width, respectively. NOHW is widely used on GPU
[53], NHWO is the default layout on CPU in TensorFlow [1], and
HWON is used in digital signal processing.

After graph-level optimization, the compiler will lower each node
in the computational graph to operator-level representation. An
operator can typically be represented as deeply nested loops. As the
major part of operator-level optimization, loop optimization (e.g.,
loop tiling, vectorization, etc.) [7, 10, 26, 28, 55] is to transform the
loop nest to schedule the execution of statements of each operator.

The motivation for this work is as follows.

Observation 1: It is beneficial to jointly perform data layout
optimization and loop optimization. We illustrate the benefits

W + (KW - 1)

tile stride -
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Figure 2: Layout with overlapped tiling.

by an experiment that optimizes loops of C2D based on NOHW,
NHWO, and HWON layouts, respectively. Our platforms include
32-core Intel Xeon Silver 4110 CPU@2.1GHz, NVIDIA RTX 2080Ti
GPU, and Kirin 990 ARM SoC. We report the performance in Fig. 1,
where the latency axis is in log scale, and each hardware involves
multiple operator configurations (different number of channels,
convolutional strides, etc.) to cover rich workloads. We observe that
the best layout could improve the performance of loop optimization
by 55.9%, 87.2%, and 48.8% on average on Intel CPU, NVIDIA GPU,
and ARM CPU, respectively. On the converse, making a choice
among different layouts is not easy when there is no feedback
from loop optimization, due to the highly divergent performance
with regard to operator configurations and platforms. For example,
although NHWO often outperforms NOHW and HWON on CPUs,
especially when the number of input channels is small, there is still
no clear rule that can fit all configurations.
Observation 2: Existing solutions cannot effectively perform
joint tuning due to the high cost of layout manipulation. Ex-
isting systems [6, 10, 70] typically couple the tensor storage with
the implementation of operators, thus changing layouts requires re-
implementation. Such a high cost of layout manipulation limits the
number of layout choices that can be explored, and further leads to
the unidirectional optimization flow. While there are works using
special layouts to improve versatility, e.g., N OQtH Wo; where o; is a
tiling parameter that can be changed without re-implementation
[44], they still only cover a small layout optimization space. More-
over, switching to another category of layouts still requires re-
implementing operators and even rewriting loop-tuning templates.
We use a more versatile layout as a motivating example. This
layout is outside the tuning space of N O—O[H Wo; and is hard to be
discovered manually or without joint tuning. It can achieve perfor-
mance improvement of 32.4% over N OQH Wo;. Besides tiling the
channel dimension, this layout further tiles the spatial dimensions
(the height and the width) of the output tensor into four blocks.
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for n in range(N):
for oh, ow in range(2, 2):
for oo in range(0 // o_t):
for ih, iw in range(H // 2, W // 2):
for io in range(o_t):
Conv [n] [oh] [ow] [oo] [ih] [iw] [io] = 0.0
for i, rh, rw in range(I, KH, KW):
for io in range(o_t):
Conv [n] [oh] [ow] [o0] [ih] [iw] [io] += \
Inp[n] [oh] [ow] [i] [ih+rh] [iw+rw]\
* Ker[oo] [i] [rh] [rw] [io]

Figure 3: Program based on the layout in Fig. 2.
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Figure 4: Design overview of ALT.

Each spatial tile of the output tensor has shape %[ X % For a C2D
with convolutional stride 1, the height and the width of the input
tensor are H + (KH — 1) and W + (KW — 1), where KH and KW are
the height and the width of the convolutional window. Due to the
sliding-window operation of C2D that has natural overlaps, each
output tile requires a (% + (KH - l)) X (% + (KW — 1)) tile of
the input tensor for convolution. This leads to the layout in Fig. 2,
where each colored area denotes a tile, and the overlap between
tiles along the input tensor height is exactly (KH — 1). After the
layout transformation, the generated loop nest is shown in Fig. 3,
where I is the number of input channels, Conv, Inp, and Ker are
the output tensor, input tensor, and weight tensor, respectively.
In Fig. 3, we also tile the output channels by o; to achieve multi-
dimensional layout tiling. Besides, the corresponding loop io is
placed as the innermost loop to improve locality, as a showcase for
joint layout and loop optimization. The shape of Conv in Fig. 3 is
NXx2x2x % X % X % X 0¢. Such multi-dimensional tiling with
overlaps promotes data locality and cache utilization. We defer the
detailed profiling results on various layouts in Section 7.3.3.

3 SYSTEM OVERVIEW

ALT is a deep compiler that achieves joint graph-level layout op-
timization and operator-level loop optimization to generate high-
performance tensor programs for heterogeneous platforms auto-
matically. The system overview of ALT is depicted in Fig. 4, which
incorporates two major modules: auto-tuning and transformation.
The transformation module is a generic infrastructure that achieves
low-cost layout and loop manipulation by easy-to-use primitive
functions. Based on it, the auto-tuning module performs joint data

layout and loop optimization by searching in the parameter spaces
of the primitive functions. The workflow of ALT is as follows.

First, the user provides the computational graph of a deep model,
which a domain-specific language (e.g., a subset of Python) can
express. It can also be constructed from a model file generated by
other frameworks (e.g., TensorFlow [1]).

Second, the auto-tuning module builds search space for tensors
and operators and explores the space jointly. To reduce the tuning
time, it uses a cost model to minimize time-consuming on-device
measurements. When the exploration completes, it decodes the
best performant point found in the space into a sequence of lay-
out and loop primitives. Then, it delivers these primitives to the
transformation module.

Third, the layout propagation submodule propagates layout prim-
itives. Then, the transformation module applies all primitives to
perform layout and loop transformation to generate an optimized
tensor program. Finally, we deploy the program on different hard-
ware for inference.

4 TRANSFORMATION

We first introduce the transformation module of ALT, which is
a generic infrastructure for manipulating data layouts and loops.
The transformation module consists of three submodules: layout
transformation, layout propagation, and loop transformation.

4.1 Layout Transformation

To achieve low-cost layout manipulation and easy layout tuning,
we devise various primitive functions to transform data layouts:
split, reorder, fuse, unfold, pad, and store_at. Among them, split,
reorder, and fuse are basic primitives and the others are advanced
primitives. These primitives lift the data layout transformation
from the black-box compiler level to the source level to facilitate
leaner control with domain-specific knowledge. We will temporarily
cache the operation each time a primitive is applied on a tensor.
During program generation, as a compilation pass, we will actually
transform the data shapes and alter the corresponding accessing
statements in the program. Thus, no human interference is required
for re-implementing the operators.

4.1.1  Basic Layout Primitives. The basic primitives perform one-to-
one transformations. Given an n dimensional tensor T with original
data layout of N1 N3...Ny, and accessing expressions of iy, i, ..., in,
we summarize basic primitives in Table 1, where 1 < k < nisan
index to dimensions, Fy. is an integer denoting the splitting factor,
p is a permutation vector with p(k) as its k-th element, and Fo—p,
is an abbreviation for [1}Z, F; (Nk_ k1 is similar).

For instance, to get the N OQtH Woy layout from NOHW, we can
apply the following primitive sequence:

split(T, dim=2, factors=[0 // o_t, o_t])

reorder(T, perm=[1, 2, 4, 5, 3])

Alternatively, to pack the layout into spatial blocks, we can trans-
form NHWO through another primitive sequence:

fuse(T, dims=[2, 3, 4])

split(T, dim=2, factors=[0 // 4, 4, H * W])
reorder(T, perm=[1, 2, 4, 3])
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Table 1: Basic layout primitives.

Primitive Parameter Transformed Shape Transformed Accessing Expressions

split k, Fi, ... Frm .Ni_1F1...FuNiyq .. ket T e = mOd Frpey, i mod Fop, iy .
reorder permutation vector p - Np(1)Np(2)---Np(k) ip(1)>ip(2)> -+ ip(K)

fuse kk+1,..k+m N (NS kem) Nesma1 - oo i1, (e Nosm + ipg 1 Nsm + oo+ iem)s ieamats -

During program generation, the first fuse primitive produces shape
N(HWO), the second gives N(%)4(HW), and the final reorder
generates N (%)(H W)4, based on Table 1. Assuming the original
accessing statement T [n][h][w][o] in the code, it will be trans-
formed as follows:

(1) T[n][A(WO) + wO + 0], and let e = h(WO) + wO + 0
(2) Tln][ g7z 7y mod 4][e mod (HW)]
(3) T[n][gg1le mod (HW)][ 75 mod 4] .

4.1.2  Advanced Layout Primitives. The above examples show the
versatility of basic primitives. However, there are cases that cannot
be covered, such as the overlapped tiling in Fig. 2. To achieve such
special transformations, we abstract advanced layout primitives:
unfold, pad, and store_at.

unfold: This primitive performs overlapped tiling. It accepts a
tile_size parameter, and a stride parameter which is the interval
between two tiles:

unfold(tensor, dimension, tile_size, stride)

We denote tile_size as B and stride as S. If the original size for
a dimension is D, this primitive will generate two new dimensions
with sizes of ([%] + 1) and B. For instance, an array {1,2,3,4,5}
can be unfolded to a 2-D array {{1,2,3},{3,4,5}} by setting B =3
and S = 2. For the input tensor layout in Fig. 2, we can set B =
%[ +(KH-1),S= % for the height dimension, and the width is
similar.

The unfold primitive is useful for sliding-window computational
patterns, e.g., convolutional layers. They have the memory access
pattern of Vi + r, where V is the constant convolutional stride, i is
the window index, and r is a reduction iterator for the offset inside
a window. In the following, we use M to denote the window size
(e.g., M will be equal to KH and KW for the two patterns ih + rh
and iw + rw in Fig. 3, respectively). Then, the original accessing
statement T[Vi + r]| will be transformed to

Vi+r-S . (1)

i i
[L% J+1 [ BM | +1 j
Besides unfold, we also propose pad and store_at primitives. The
pad primitive is to append zeros for a selected dimension, which
is useful to align data in memory and alleviate bank conflicts on
the shared memory of the NVIDIA GPU. The store_at primitive
allows fusing two tensors together by attaching one to another to
improve inter-tensor data locality. For example, in a fully connected
layer, it can attach each element of the bias vector to each column
of the weight matrix. Subsequently, the inner product and the bias
addition in general matrix multiplication (GMM) may be computed
together by accessing the weight column and the bias element in the

padding layout X @ layout X @

(a) Layout conversion operator.

propagation
(b) Layout propagation.
Figure 5: Ways to achieve runtime layout conversion.

for n in range(N):
for ht in range(H // 4):
for w, o in range(W, 0):
for hi in range(4):
Conv [n] [ht] [w] [o] [hi] = 0.0
for ri, rh, rw in range(I, KH, KW):
Conv [n] [ht] [w] [o] [hi] += Inp[...]*Ker[...]
for n, o, h, w in range(N, 0, H, W):
ReLU[n] [o] [h] [w] = max(Conv[n] [h//4] [w] [o] [h%4],0)

Figure 6: Loop nests without propagation and fusion.

same cache line. Additionally, all three primitives have their inverse
counterparts, namely fold, unpad, and decouple_at, to transform
layouts back and forth.

4.2 Layout Propagation

The layout primitives working at the local tensor level could incur
overhead when performing joint or end-to-end optimization on a
computational graph. Specifically, we discover two types of such
overhead: layout-conversion overhead and fusion-conflict overhead.
In this subsection, we will analyze the overhead and propose the
layout propagation mechanism to address this issue.

Given a C2D, if it requires a different layout for the weight
tensor, we can transform it offline without any runtime overhead
because the weight tensor is a constant. Unfortunately, if the C2D
requests a different input layout X”, it can only be achieved either
by (1) inserting an operator performing runtime layout conversion
(Fig. 5a) or (2) letting the producer operator yield each element based
on the new layout directly (Fig. 5b). Inserting layout conversion
operators will incur extra overhead due to runtime data movements.
So, we prefer the second way, which is called layout propagation.
After propagation, the padding operator actually performs two tasks
at runtime: padding zeros and converting the layout. Similarly, for
the output tensor of C2D, we can let its consumer operator access
the new layout directly, rather than inserting another conversion
operator next to C2D.

Besides the layout-conversion overhead, another delicate issue
emerges when incorporating operator fusion. Operator fusion is a
loop-tuning technique to promote inter-operator data locality by
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for n, ht, w, o, hi in range(N, H // 4, W, 0, 4):
Conv [n] [ht] [w] [o] [hi] = 0.0
for ri, rh, rw in range(I, KH, KW):
Conv [n] [ht] [w] [0o] [hi] += Inp[...] * Ker[...]
ReLU[n] [ht] [w] [0] [hi] = max(Conv[...], 0)

Figure 7: Loop nests with propagation and fusion.

letting the downstream operator consume the intermediate data
immediately before spilling out of the cache. Consider two opera-
tors: C2D and ReLU, and the original output layouts of them are
both NOHW. Suppose we transform the output layout of the C2D
to N %WO4 through split and reorder primitives. Then, the gen-
erated program is shown in Fig. 6. The loop nest of the C2D is
reconstructed accordingly due to the output layout transformation.
Different from the original case, we cannot perform loop tiling on
the two loop nests with the same tile sizes and then fuse the two
nests. Since fusion is an effective technique, reducing the chance of
fusion due to the reconstructed loop nest will result in performance
loss.

To eliminate such fusion-conflict overhead induced by layout
transformation, we extend the layout propagation mechanism such
that the same layout can be shared among multiple tensors. Layout
propagation can be implemented easily by duplicating the primitive
sequence of the source tensor for the target tensor. For instance,
we replicate the primitives from tensor Conv in Fig. 6, i.e., split and
reorder primitives, for tensor ReLU. Then ReLU will trigger the
same loop nest reconstruction, hence aligned perfectly with that of
C2D. Consequently, the fusion-after-tiling in loop tuning will be
the same as the normal case, as illustrated in Fig. 7.

Although layout propagation helps to eliminate the overhead
incurred by layout transformation, it has three constraints. First,
we only propagate primitives along a path with only element-wise
operators and among tensors with the same shape. Given an op-
erator Y[i] = F(X[i]), there exists an element-wise data mapping
between the output tensor Y and the input tensor X. We can propa-
gate the layout of Y to X, or vice versa. This constraint is introduced
because the parameters of primitives are shape-dependent. Second,
we will not propagate a primitive sequence if it contains non-trivial
advanced primitives. This is because advanced primitives will in-
duce data expansion. Instead, we will insert conversion operators
when they arise, as in Fig. 5a. Third, the layout tuning for each
complex operator will be performed independently. This constraint
is to eschew the overhead of layout propagation itself, because the
optimal layout of a complex operator may lead to inferior perfor-
mance for another. For example, given two consecutive C2Ds, we
will insert a conversion operator between them if needed rather
than letting the output tensor of the former C2D and the input
tensor of the latter C2D share the same layout. Notably, no con-
version operator is necessary when other simple operators exist
between the two C2Ds (e.g., we can propagate a layout onto the
padding operator like in Fig. 5b and let it perform the actual layout
conversion).

4.3 Loop Transformation

We performloop transformation via reusing the loop primitives of
TVM [10]: split, reorder (same names as layout ones, but distinct
functions), vectorize, unroll, cache_read/write, parallel, inline, and

compute_at. Most loop-tuning techniques, including loop tiling,
vectorization, and operator fusion, can be realized by combining
these primitives.

5 AUTO-TUNING

Even with the transformation module, optimization is still painful
because it requires numerous manual trials. The combination of
layout and loop tuning further exacerbates the problem. Thus, in
the auto-tuning module, we devise a unified framework to jointly
optimize layouts and loops to generate high-performance programs
automatically.

Our joint tuning comprehends three steps: 1) we build the layout
tuning space for tensors and loop tuning space for operators, each
point in the space can be decoded as a primitive sequence; 2) we
explore the tuning space to find the best performant point; 3) we
decode this point as instantiated primitives and deliver them to the
transformation module.

5.1 Space Building

Auto-tuning is to search for the code with the best performance in
the tuning space. With our transformation module, we only need
to find the best parameters to apply primitives. Thus, the tuning
space is equivalent to the parameter space for primitives. For now,
we only consider layout split, reorder, and unfold primitives in the
layout space. Also, we will omit details on the loop space, which is
similar to [83, 89], e.g., space of loop split factors for each operator.

The layout space to be built should be pruned, otherwise, it will
be infinitely large because the number of primitives that can be
applied is infinite. As in Section 1, we only perform layout tuning
for complex operators and propagate their results to reduce the
number of tuning tasks. Further, we craft a layout tuning template
for each tensor that is accessed by complex operators. Each template
only exposes a subset of parameters of primitives as tunable options.
The templates are crafted based on the following observations on
how data layouts influence performance considering intra-operator
data dependency and hardware characteristics.

First, data layout influences the data reuse strategy, [16, 37, 45,
47]. For most architectures, data reuse is vital to reducing the num-
ber of memory accesses and improving software pipeline. Consider
the C2D as an example, each output element requires (KH)-(KW)-I
input elements for reduction. Without data reuse, we need totally
N-H-W-0O-(KH) - (KW) -Iload instructions for the input tensor.
Fortunately, an input element is required by at most (KH) - (KW)-O
output elements. Thus, we can reuse an input element to accumu-
late on KH X KW spatial positions or O channels before spilling it
out of the cache. Besides, sequential data accesses can be bundled
by SIMD instructions. With these two aspects, we can also explain
why NHWO layout often performs better than NOHW layout [83]:
1) an input element can be reused to accumulate on many (at most
O) output channels and O is typically large, hence a high reuse rate;
2) output channels can be loaded with SIMD instructions easily
since O is the last dimension.

Second, data layout influences cache utilization. Both layout and
loop tiling can be exploited to let a data block fit in cache [64]. Be-
sides, we also observe that layout tiling can further prevent cache
misses by facilitating hardware prefetching [13, 17, 48]. To verify




































































































































































































































ALT: Boosting Deep Learning Performance by Breaking the Wall between Graph and Operator Level Optimizations )

Table 2: Profiled L1 data cache misses.

Tile Size  #L1-mis / Pred. (1st F.) #L1-mis (2nd F.)
512 x4 32/32 208
512 X 16 96 /128 262
512 X 64 501/ 512 785
512 X 256 2037 / 2048 2952

this, we conduct an experiment on a Cortex-A76 CPU, which is
a big core on Kirin 990 SoC, the L1 data cache line size of which
is float32x16 (i.e., 64 bytes). We profile two functions and both of
which only load a 2-D data block once from memory with NEON
instructions. The data elements for the first function are stored
contiguously in memory, i.e., layout tiling case. By contrast, the
elements for the second function are stored row by row, i.e., loop
tiling case without changing data placements. The profiled L1 cache
misses are reported in Table 2, where we also present our predic-
tions based on hardware prefetching in the second column. We
observe that the CPU is very likely to fetch four contiguous cache
lines when a miss event is triggered. For example, the prediction
for tile size 512 X 4 is calculated as 51162;44 = 32. From Table 2, layout
tiling is preferable to loop tiling to improve cache utilization via
hardware prefetching. Most importantly, the cache performance
after layout tiling is always better than in other cases.

The second observation indicates that layout tiling improves
cache utilization even though loop tiling has been exploited. Thus,
our layout tuning template is a tiling template, with tiling sizes
as basic tunable options. For most dimensions, the tiling can be
achieved with split primitives. For height and width dimensions
of convolutions, it can be achieved with the unfold primitives to
enable the overlapped tiling. After splits and unfolds, based on the
first observation, we let the tiled channel dimension be the last
dimension to promote data reuse and SIMD. Consequently, our data
layout tuning template for C2D has the following form:

e output tensor Cono: Nhﬂt % %htw,ot, where h;, wy, and o; are

three tunable split parameters for tiling H, W, and O.

o inputtensorInp:Nhﬂt %% (ht + KH — 1) (wy + KW — 1) iz, where
(ht + KH — 1) and (w; + KW — 1) are the unfolded dimensions,
and i; is the only tunable split parameter for tiling I.

e weight tensor Ker: %é(KH)(KW)i;o;, where i and o] are two

tunable split parameters for tiling I and O.

In the above templates, uppercase letters represent the original
dimensions, while lowercase letters with a subscript ¢ denote the
tiled parameters correspondingly. We do not need to tune the un-
folded dimensions for the input tensor, because they are directly
related to the tiling of the output tensor. Suppose the tuner splits
the H dimension of the output tensor as hﬂt X hy. It then applies the
following unfold primitive on the input tensor directly:
unfold(Inp, Inp height, h_t + (KH - 1), h_t)

This is the same as the case in Fig. 2 where h; = %I
In summary, the pruned layout space for C2D consists of six

tunable parameters (i.e., at a scale of O(10°)): hy, wy, o; for tiling
H, W, O of the output tensor, i; for tiling I of the input tensor, i}, o]

r-—==n-"
Cez>
| . |
\Qcomplex operator to optimize layout
EEE— | et y
initial layout state | | loop state

<2

random walkl

| |
| I
I | feedback! :
| v action sequence :
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I_Layout Agent _! layout : Loop Agents |

Figure 8: Cross exploration architecture.

for tiling I, O of the weight tensor. For other convolutions (e.g., 3-D
case), the template is similar.

ForaGMMC = A @ B, where MN, MK, KN are the original
layouts of the three matrices, the search space is much smaller due
to fewer dimensions. Thus our template consists of split parame-
ters for all dimensions. Then, based on the first ?\}I)servation, the

reorder after splits is determined without tuning: - nﬂtmtnt for C,

mﬂt thmtkt for A, and th nﬁtk; n; for B. Finally, there are three tun-
able parameters (i.e., up to O(103) points): m;, ky, nz, in the layout
space for GMM.

The above templates only perform one-level multi-dimen-sional
layout tiling. We can expand them to multi-level cases easily, which
can be configured in ALT for scalability. For example, we can use
two-level layout tiling templates for ALT, where the template for the
output tensor of C2D can be defined as N% % o;Oo, hiwjo;hswio;.

Without our template-based pruning, the search space, espe-
cially the parameter space for the reorder primitive, will be too
large to explore. The only concern after pruning is whether the sub-
space contains good points. We verify the effectiveness of pruning
through experiments.

5.2 Exploration & Cost Model

To explore the search space, we need to: (1) visit points efficiently; (2)
evaluate visited points rapidly. We resort to the PPO algorithm [60]
from reinforcement learning (RL) to explore the space. Compared
with heuristic algorithms (e.g., genetic algorithm) and other RL
algorithms, PPO is learning-based and more stable [31], which is
introduced in [2] to speed up the tuning space exploration. To
speed up the evaluation, we develop a cost model to predict the
performance to reduce the number of time-consuming on-device
measurements.

In RL, an agent will respond (referred to as action) to environ-
ments based on its observation, which is composed of the state of the
current environment and feedback given by the environment called
reward. PPO employs two neural networks: actor and critic. The
actor gives actions while the critic judges each action, i.e., fitting
the real rewards.

Even with PPO, exploring layout and loop spaces simultaneously
is challenging. Consider the C2D as an example, we need to rebuild
its loop space every time given a new layout, because the loop nest
relies on the output layout, like n, o, h, w in Fig. 6. The reconstructed
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loop space further leads to that the points searched previously will
be invalid in the new space, hence inefficient exploration.

As in Section 1, our solution to this issue involves two aspects. We
first divide the performance tuning into two stages: the joint stage
and the loop-only stage. We then propose a cross-exploration archi-
tecture, as shown in Fig. 8, for the joint stage. The cross-exploration
repeats the following process: determining a layout through the
layout PPO actor, performing multiple rounds of loop tuning via
loop PPO actors, and feeding the best performance back as the
reward for the current layout. Consequently, we achieve a bidi-
rectional and unified optimization flow in the joint stage to find
better layouts. We also prevent inefficient loop tuning, since the
loop reconstruction will not occur in the loop-only stage.

In the following, we will only elaborate on the design of RL
action, state, and reward for the joint stage based on the cross-
exploration architecture. The loop-only stage can be achieved by
removing layout-related searches.

5.2.1 Layout Space Exploration. Since the pruned layout space only
involves tunable split parameters, we here develop a generic actor
to explore the parameter space of the layout split primitive. Then,
the final layout will be determined by a sequence of actions. Take
the C2D in Fig. 6 as an example, the action sequence for resolving
the output layout of Conv consists of: split H, split W, split O, and
reorder them to N hﬂt % Ochtwtot. The split actor only provides
the factors to split H, W, O, while the reorder is determined in the
template in Section 5.1. Similarly, replacing the first two splits with
unfolds forms the action sequence for the input layout.

Consider the dimension with a size of D in a tensor. To obtain
a generic split actor, we map its output action as to a contiguous

interval (0, 1). Then, the splitting factor F is calculated as follows:
F=R(D-as). (2

Assume the tensor Conv in Fig. 6 has O = 32. The actor gives
one action as = 0.5. Then we derive two split dimensions : 0; =
R(32%0.5) = 16, & = R(32/16) = 2.

The state for the actor is given by the concatenation of the cur-
rent states of all primitives for all tensors of the complex operator
(e.g., Inp, Ker, Conv in a C2D). For instance, when unfolding the
height of Inp in Fig. 2 into two parts, the current state of the unfold
primitive is changed to [2, % +(KH —1)], while the initial state was
[1,H+ KH — 1]. Similarly, the current state for the split primitive is
composed of factors, e.g., [2, 16] for o = 32 (initial state was [1, 32]).
Then the final state is the concatenation of all such sub-states.

5.2.2 Loop Space Exploration. The exploration for loop space fol-
lows a similar random-walk design as [89]. We first sample a batch
of points in the loop space and choose the best one as the start-
ing point, then each actor gives a direction for some parameter
space. After that, we arrive at the next point by walking along that
direction, as shown in Fig. 8.

Including the layout split actor, we have a lot of actors now. To
model the interference among subspaces/primitives, we deploy a
global shared critic network for all actors (not shown in Fig. 8 for
simplicity).

The reward r for all RL agents is the same:

r=U-1, 3)

where U is a constant and [ is the latency of some point. For layout
RL agents, [ is chosen as the best latency after several rounds of
loop exploration given the current layout.

5.2.3 Cost Model. To evaluate points rapidly, we estimate the per-
formance by developing a cost model for each hardware. The cost
model is a tree ensemble from XGBoost [9], similar to that of Ansor
[83]. For some point, we decode it as primitives and apply them to
generate the optimized tensor program. Then we feed the features
of the program (e.g., loop structures and accessing expressions)
to the cost model to estimate the throughput. During exploration,
we only measure the top-k points of a batch or an episode of RL
trajectories, which are predicted by the cost model, on the target
hardware. These measurements are also used for training the cost
model online.

6 IMPLEMENTATION

We implemented ALT based on TVM (v0.8dev1) [10] with 19K LoC
of Python and 2K LoC of C++.

To implement the layout transformation, we insert a pass before
lowering the tensor expression (TE) of TVM to TVMIR. This pass
will rewrite the indices of all tensor accesses in TE when layouts
change. With regard to an operator Y = F(X) where the output
tensor Y is of shape NiNy..Ny,, in TE this operator has m nested
spatial loops, each corresponding to a dimension of Y (one-to-one
mapping). We denote the loop variables as L = {l1,l, ..., I }. As-
sume ALT caches a set of primitive sequences S either provided
manually or by the auto-tuning module automatically. Our pass
will first transform accesses for the output tensor Y, and then other
tensors. We denote the primitive sequence for Y as S(Y) (abbrevi-
ated as Sy). Our pass first deducts the final layout of Y by applying
each primitive function in Sy. Assuming the new layout has n di-
mensions with shape N/N;..N;, the loop structure will then be
reconstructed by TE as L’ = {l!, lé, .. 1},}. Given the one-to-one
mapping between a dimension of the output tensor and a loop
variable, we will also have L’ = Sy (L). With this, we can transform
accesses for tensor X while ensuring validity. Specifically, the ac-
cesses of X must first be remapped with the newly reconstructed
loop variables. The remapping is done in two steps: 1) calculating
the inverse primitive sequence of Sy, denoted as S;l; 2) replacing
all old loop variables L by S;,l (L’) in all access indices of X. After
this remapping, the tensor accesses of X can be safely transformed
to SX(S;I (L")) by applying S(X).

To implement the layout propagation, we copy the primitive
sequence of the source tensor for the destination tensor. The joint
stage of ALT sequentially tunes each complex operator following
the topological order and propagates the resulting layouts. A special
case is that an operator can have multiple consumers or producers.
In the case of multiple consumers, ALT will propagate the layout
of the source tensor to all consumers. For the case of multiple
producers, consider Y[i] = F(Xo[i], X1[i], X2[j]), where there are
element-wise mappings between Xy and Y, and between X and Y.
When the layouts of X and X7 are both tuned, ALT will heuristically
choose X for propagation onto Y. Conversely, if the layout of Y
is tuned first (i.e., there is no complex operator prior Xy or Xj that
can propagate layouts to them), ALT will propagate the layout of
Y to both Xj and Xj.
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Figure 9: Single operator performance.

7 EVALUATION

In this section, we evaluate ALT on various hardware platforms,
including 40-core Intel Xeon Gold 6248 CPU@2.5GHz (443GB mem-
ory), NVIDIA Tesla V100 (CUDA v11.0), and Kirin 990 SoC (Android
v10). We compare ALT with state-of-the-art frameworks and com-
pilers: Torch (v1.7) [53], AutoTVM (v0.8dev1) [11], FlexTensor [89],
and Ansor [83]. Torch is a reference point for vendor libraries,
which was evaluated by using MKL-DNN library [33] for Intel CPU,
cuDNN (v8.0.4) library [12] for NVIDIA GPU, and XNNPACK li-
brary [27] for ARM CPU. AutoTVM, FlexTensor, and Ansor are
three widely used auto-tuning frameworks. Besides, Ansor outper-
forms Tensorflow Lite [1] and other hardware-specific compilers
[44, 83] such as OpenVINO [34] and TensorRT [52]. Thus, we do
not include them as baselines here.

For ALT, if not specified, we use one-level layout tiling templates
for layout space building. For loop space exploration, we set the
sampling batch size and the episode length to 128, and measure the
top-8 points predicted by the cost model on the target hardware. In
addition, we take the total number of such on-device measurements
as a metric of the search budget for all auto-tuning methods. Thus,
a batch or an episode of points in ALT will cost a budget of 8.

7.1 Single Operator Benchmark

We first present the results on single operators. We consider 9
operators, including C2D, Group-wise C2D (GRP), Depth-wise C2D
(DEP), Dilated C2D (DIL), 3-D convolution (C3D), 1-D convolution
(C1D), GMM, Transposed C2D (T2D), Transposed C3D (T3D). Each
operator is evaluated using 10 random configurations with different
batch sizes, kernel sizes, etc. For instance, the value of batch size is
selected from [1, 16], and the number of input channels is uniformly
sampled from [3, 16, 32, 64, 512, 960, 1280]. We generate 90 test cases
for each device. The result is normalized based on the geometric
mean of speedups over the worst latency of each test case. For C1D,
C2D/T2D, and C3D/T3D and their variants, we test NOW /NWO
for C1D, NOHW /NHWO for C2D/T2D, and NODHW /NDHWO
(D is the depth dimension) for C3D/T3D and report the best for
baselines except Torch (it only supports NOW, NOHW, NODHW).
We set the search budget to 1000 for all auto-tuning methods, which
is suggested by Ansor. For ALT, the budget for the joint stage and
the loop-only stage is 300 and 700 respectively.

As shown in Fig. 9a, on Intel CPU ALT achieves 9.5X, 9.9%, 9.8X,
and 1.6X speedups in comparison with Torch, AutoTVM, FlexTen-
sor, and Ansor respectively. Among all operators, DIL and DEP
have lower operational intensity (the ratio of the number of compu-
tational instructions to the number of memory access instructions),

and thus they are more likely to be memory-bound. For DIL and
DEP, ALT outperforms other baselines with a large margin because
layout tuning can effectively reduce memory accessing overheads.
Even for operators that are typically compute-bound, e.g., C2D and
C3D, ALT still achieves notable speedups. This is because the op-
erational intensity depends on tensor shapes. ALT can tailor the
tensor layouts toward each specific shape and hardware platform.

We achieve similar results on NVIDIA GPU and ARM CPU. Com-
pared with Ansor, ALT achieves an average of 1.5X speedup on
NVIDIA GPU (Fig. 9b), and 1.4X speedup on ARM CPU (Fig. 9c).
We do not include the results of FlexTensor for ARM CPU since it
does not support ARM backends. Generally, auto-tuning methods
can outperform Torch because non-typical operator configurations
are often less optimized in vendor libraries. Further, AutoTVM suf-
fers from small tuning space and FlexTensor has no cost model,
thus both demonstrate inferior performance than Ansor and ALT.
Additionally, compared with Ansor, ALT can effectively tune data
layouts with feedback from operator-level optimization and hence
illustrate significant improvements.

7.2 End-to-End Benchmark

We then evaluate the end-to-end performance of ALT with five
neural networks, including applications of 1) image processing:
ResNet-18 (R18) [30], MobileNet-V2 (MV2) [59], 2) natural language
processing: BERT-base (BB) [19], BERT-tiny (BT) [20], and 3) video
processing: ResNet3D-18 (R3D) [29]. For Intel CPU and NVIDIA
GPU, the benchmarks use batch sizes of 1 and 16. For ARM CPU,
we set the batch size to 1 due to the limited resource.

For convolutional networks, the input tensor is of shape N X 3 X
224 x 224 (image processing) and N X 3 X 16 x 112 X 112 (video
processing), respectively. For BERT, the shape of the input tensor
is N X 128. For auto-tuning baselines, we set the search budget as
20,000 (which is suggested by Ansor [83]). We set the budget for the
joint stage to 8,000 and the budget for the loop-only stage to 12,000
in ALT. Additionally, Torch uses NOHW /NODHW layouts while
AutoTVM and Ansor use N oQtH Wo; /N OQtDH Woy after integrating
NeoCPU [44].

We illustrate the speedup ratio of all methods over Torch in
Fig. 10, where b1 denotes batch size 1 and b16 denotes batch size
16. The number on top of each bar demonstrates the latency in
milliseconds. To verify the effectiveness of the joint tuning and
layout propagation, we define two variants of ALT: (1) ALT-OL,
which only involves loop optimization without the joint stage based
on NHWO/NDHWO layouts; (2) ALT-WP, which only eliminates
conversion operators between adjacent operators, as that shown
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Figure 10: End-to-end inference performance.

in Fig. 5b. Compared with Ansor!, ALT achieves 1.47x, 1.39x, and
1.46X speedups on Intel CPU, NVIDIA GPU, and ARM CPU, respec-
tively. For R3D, most of its operators are compute-bound, thus ALT
achieves similar results with Ansor. For MV2, which is a lightweight
network with lower operational intensity, ALT outperforms the
baselines significantly.

Notice that ALT-OL achieves similar performance as Ansor be-
cause both of them mainly involve loop tuning. When incorporating
layout tuning and basic layout propagation, ALT-WP shows 1.1x
speedup over ALT-OL in general and no improvement in a few cases.
ALT achieves 1.3x speedup on average compared with ALT-WP.
This is because operator fusion is a critical loop-tuning technique
to improve performance, while ALT-WP cannot combine layout
tuning and loop tuning effectively.

7.3 Micro Benchmark

We dive into the details to achieve a better understanding of the
system design. First, we present the overhead of layout propagation.
We then study the parameter sensitivity of ALT in the end-to-end
optimization. We will also conduct a case study to help understand
the searched layouts and loops. Finally, we present more observa-
tions to provide hints for deep compiler optimization. Notably, we
do not give more experiments on cost model [83] and the PPO ex-
ploration method [2] because they are not our major contributions.

! Ansor performs better than Torch [53] and AutoTVM [11]. We omit the results of
Torch and AutoTVM due to the lack of space.
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7.3.1 Layout Propagation Overhead: We here study the overhead
of layout propagation to show the necessity of the introduced con-
straints in Section 4.2. We evaluate two subgraphs on 48-core In-
tel(R) Xeon(R) Gold 5117 CPU @2.0GHz and NVIDIA RTX 3070
GPU. Each subgraph consists of three operators: padding (padding
size is 1), C2D (KH = KW = 3,stride = 1), C2D (KH = KW =
1,stride = 1). The input height/width of subgraph#1 is 7, while
it is 14 for subgraph#2. Besides, all the numbers of input/output
channels are 512, except that the number of output channels of the
latter C2D (KH = KW = 1) in subgraph#2 is 2048. We conduct two
variants of ALT: ALT-FP and ALT-BP. ALT-FP will first tune C2D
(KH = KW = 3) and propagate its output layout to the input tensor
of the latter C2D (KH = KW = 1). While ALT-BP will first tune
C2D (KH = KW = 1) and propagate its input layout to the output
tensor of the former C2D (KH = KW = 3). Instead, ALT will tune
the two C2Ds separately and insert a layout conversion operator
between them according to the third constraint in Section 4.2.
The profiling results are reported in Fig. 11, where we use Ansor
as a reference point. We observe that ALT outperforms ALT-FP
and ALT-WP. In other words, the best output layout of the C2D
(KH = KW = 3) is sub-optimal for the second C2D (KH = KW =
1), and vice versa. Independent layout tuning for each complex
operator brings more benefits while the layout conversion only
incurs low overhead (2 microseconds for GPU and 8 microseconds
for CPU). Combined with the results of ALT-WP in Fig. 10, the
fusion conflicts incur more overhead than layout conversions when
performing layout transformation. We alleviate such two kinds
of overheads by layout propagation and eschew the overhead of
propagation itself by introducing necessary constraints.

7.3.2  Parameter sensitivity: We study the parameter sensitivity by
comparing the performance given different budget settings and
search space sizes. We include three variants here: 1) two-level
tiling templates with 20,000 budget; 2) two-level tiling templates



ALT: Boosting Deep Learning Performance by Breaking the Wall between Graph and Operator Level Optimizations

but with 30,000 budget; 3) one-level layout tiling templates with
20,000 budget as the baseline (i.e., same as Section 7.2).

The end-to-end performance in different settings is shown in
Fig. 12. The first variant expands the search space size while keeping
the budget unchanged. Compared with it, the baseline illustrates
15% performance improvement on average. By contrast, after set-
ting the budget to 30,000, the second variant improves about 6%
performance over the baseline. Also, more improvements can be
obtained if given a larger budget, since one-level tiling templates
constitute a subset of the two-level variant. For the budget of 20,000
in Section 7.2, one-level layout tiling templates yield a more effec-
tive trade-off between the final performance and the search space
size. The budget of 20,000 to optimize a network typically costs
12-16 hours. But, it is affordable for practitioners as they only need
to execute ALT once. Additionally, these results demonstrate the
scalability of the tuning space, which is hard to achieve in prior
auto-tuning works.

7.3.3 Case study: To understand how the joint tuning improves
the loop performance, we perform loop optimization based on
NHWO, NOHW, N%HWOt, and Nhﬂt % %htwtot on Intel CPU.
We profiled a small computational graph, which contains several
operators: padding (after padding, the tensor will have N = 1,1 =
3,H =W = 230), C2D (O = 64,KH = KW = 7, convolutional
stride is 2), bias addition, and ReLU. This small graph is also the
first layer of R18-b1. We set o = 16 for N%HWOt (i = 3 for the
input tensor), while the searched layout has h; = 4, w; = 16,0; = 16
for Nhﬂt % Ochtwtot (i = 1 for the input tensor). The platform is

48-core Intel(R) Xeon(R) Gold 5117 CPU @2.0GHz.

Table 3: Profiling results based on several layouts.

Layout (Conv & Ker)  #Inst. #L1-1ds #L1-mis #L1-sts Lat.
NHWO & rsIO 509.4  166.4 9.7 103.6 0.34
NOHW & OlIrs 626.9  206.6 45 121.3  0.49
ND—OtHWo, & %%rsio 567.6 193.6 9.9 112.9 0.37
N% % %htwtot &.. 550.5 174.3 3.9 106.2 0.25

The results are summarized in Table 3, where we abbreviate
(KH)(KW) to rs for the weight tensor Ker. The latency (Lat.) is
recorded in milliseconds and others are on a scale of 10°. We ob-
serve that for all layouts, except NOHW, their optimized loop
nests prefer reusing input values by computing multiple output
channels once with SIMD, thus reporting fewer instructions and
fewer cache loads/stores than NOHW. Compared with N %H Woy,
NHWO shows better data locality due to the larger tile size for
the output channel. Specifically, O = 64 in NHWO yields a higher
reuse rate than o; = 16 in N%HWot, as analyzed in Section 5.1.

Further, N hﬂ, % ochtwtot achieves more efficient cache utilization
only 2% misses) than NHWO, due to the contiguous storage of
y g g

intra-tile data elements after layout tiling.

7.3.4  Other observations: Besides the profiled results, we observe
that the o; parameter in the templates to tile output channels is
often tuned as twice as the number of vector lanes that the platform
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supports when the spatial dimensions are not tiled. Specifically,
we observe that o; = 32 on Intel CPU, o; = 8 on NVIDIA GPU,
and o; = 8 on ARM CPU frequently arise, although the number of
vector lanes with float32 data types is 16 for AVX-512, 4 for CUDA,
and 4 for NEON. This is different from many hand-tuned libraries.
However, these results are not applicable to all configurations or
platforms. By contrast, the methodology in our micro-benchmarks
could help understand the optimized layout, and similar analysis
can be conducted for other cases.

8 RELATED WORK

Deep learning compiler. A variety of deep compilers have been
developed. Halide [55] and TVM [10] decouple the operator descrip-
tion and schedule to simplify loop optimization. XLA [39], Glow
[58], nGraph [18], and Relay [57] develop graph-level representa-
tions to support layout selection, constant folding, etc. Rammer [46]
supports fine-grained operator fusion. CODE [67] speeds up the
ensemble of deep models. Cortex [23], Nimble [62], DietCode [82],
and CoRa [24] focus on optimizing recursive/dynamic networks.
TASO [35], Tensat [76], PET [71], Unity [68], and Ollie [86] perform
subgraph substitutions to obtain a more efficient computational
graph. Tensor Comprehension (TC) [70], Tiramisu [6], MLIR [38],
and AKG [81] integrate polyhedral techniques. Bolt [75] provides
support for tensor core by integrating CUTLASS [51]. SoyBean
[72] and Alpa [84] provide auto-tuning support for inter- and intra-
operator parallelism in distributed scenarios. UNIT[74], AMOS [88],
and TensorlIR [25] provide support for tensorization on tensor accel-
erators. SparTA [87] and SparseTIR [77] introduce representation
for sparse tensors. Compared with ALT, the layout auto-tuning,
together with the joint data layout and loop optimization, is limited
in these works. For instance, TC and Tiramisu require developers
to transform data buffers manually. Although Relay and TVM can
insert layout conversion operators between C2Ds with different
predefined layouts (e.g., NOHW, NHWO, etc.), each layout com-
bination requires a manual re-implementation of operators. By
contrast, ALT supports generic graph-level layout auto-tuning with
feedback from operator-level optimization.

Layout and loop tuning. Many systems try to improve the
performance with layout transformation [11, 15, 22, 41, 43, 44, 54,
79, 83]. For instance, [22, 79] optimize data layouts for FPGA design.
[41, 54] suggests to choose layouts among NHWO, NOHW, etc.
[15, 43] tightly couples it with the sparse computation. Compared
with ALT, they lack versatility and are limited to a few tuning
options. By contrast, the systems in [11, 83] can typically set the
oy parameter in N %H Woy layout after integrating NeoCPU [44].
However, they have limitations: 1) switching to another kind of
layout (e.g., a different reorder, or the overlapped tiling in ALT)
still requires manually rewriting operators and even the templates
of loop tuning, due to the coupling among data storage, operator
implementation, and the loop-tuning templates; 2) o, is typically
predetermined, while in Ansor [83] is set via resolving the loop
tiling configurations after loop tuning, as a packing technique and
only for constant tensors, hence no joint tuning. ALT addresses the
two limitations via 1) the generic layout transformation submod-
ule, which requires no re-implementation, and is also independent
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of the loop transformation to achieve the decoupling; 2) an auto-
tuning module at a higher level to orchestrate the cross-layer joint
tuning while guaranteeing efficiency. As for recent loop optimiza-
tion techniques [2, 3, 5, 21, 42, 65, 66, 73, 78, 80, 85, 89-91], such
as delicate cost models [3, 5, 42, 73], aggressive operator fusion
[21, 40, 46, 50, 80, 90], and micro-kernel construction [91], they are
complementary to ALT.

9 CONCLUSION

In this paper, we propose ALT, a compiler that jointly performs
graph-level data layout optimization and operator-level loop opti-
mization for deep models. ALT provides a generic transformation
module for low-cost layout and loop manipulation. It further inte-
grates an auto-tuning module for bidirectional and unified layout
and loop tuning. Experiments show that ALT outperforms state-of-
the-art vendor libraries and auto-tuning frameworks.
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