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ABSTRACT
Deploying deep learning models on various devices has become
an important topic. The wave of hardware specialization brings
a diverse set of acceleration primitives for multi-dimensional ten-
sor computations. These new acceleration primitives, along with
the emerging machine learning models, bring tremendous engi-
neering challenges. In this paper, we present TensorIR, a compiler
abstraction for optimizing programs with these tensor computation
primitives. TensorIR generalizes the loop nest representation used
in existing machine learning compilers to bring tensor computation
as the first-class citizen. Finally, we build an end-to-end framework
on top of our abstraction to automatically optimize deep learning
models for given tensor computation primitives. Experimental re-
sults show that TensorIR compilation automatically uses the tensor
computation primitives for given hardware backends and deliv-
ers performance that is competitive to state-of-art hand-optimized
systems across platforms.

1 INTRODUCTION
Deploying high-performance machine learning models has become
an emerging challenge in various areas, including image recogni-
tion [18, 19, 39], natural language processing [13, 34, 44], and games
[27, 29, 37]. The advances in machine learning bring demands to
support a broad range of models. In the meantime, there are in-
creasing demands to deploy smart applications to a broad spectrum
of devices ranging from servers to embedded environments.

∗Both authors contributed equally to the paper
†Part of this work was done at Shanghai Jiao Tong University

# semantics

C[0] += A[0] * B[0]

# implementation

llvm.fmuladd.f32

# semantics
for i in range(4):
C[i] += A[i] * B[i]

# implementation
llvm.fmuladd.v4f32
# diagram

# semantics
for y, x, k in grid(16, 16, 16):
C[y, x] += A[y, k] * B[k, x]

# implementation
nvvm.wmma.m16n16k16.mma.row.row.f32.f32
# diagram

+= ×+= ×

Generic FMA

Vector FMA Nvidia Tensor Core and NPUs

Scalar unit SIMD
vector units

Specialized 
tensor instructions

Figure 1: Trends of hardware specialization. The classical ac-
celeration technique uses vector units to process multiple
scalar computations simultaneously, which is still widely
used on CPU platforms. However, to cater to increasingly
heavier computation throughput requirements, modern ac-
celerators usually contain specialized high-dimensional ten-
sor computation instructions, creating the need for ten-
sorized program optimization.

The wave of hardware specialization further complicates the
problem (Figure 1). Driven by the goal of machine learning accelera-
tion, modern hardware backends introduce specialized primitives to
speed up tensor computations (e.g., Nvidia Tensor Core [31], Google
TPU [22]). Domain experts also start to develop micro-kernel prim-
itives, which carefully organize a series of highly optimized instruc-
tions to perform a sub-computation to speed up domain-specific
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tensor operator libraries. These hardware instructions and micro-
kernel primitives typically operate on multi-dimensional tensor
regions and effectively perform tensor operations such as multi-
dimensional loads, dot product, and matrix multiplication (Figure 1).
We call these opaque tensor computation acceleration constructs
tensorized intrinsics and transformation procedure to use these in-
trinsic tensorization. In order to get the best out of these hardware
backends, modern machine learning systems need to optimize pro-
grams that contain hierarchical loop nests, multi-dimensional loads,
and tensor intrinsics – we call this problem tensorized program op-
timization.

Most of the current tensorized programs are optimized by do-
main experts, who compose tensorized primitives together with
multi-dimensional loops, threading patterns, and data caching to
craft specialized kernel libraries such as Intel MKL-DNN [20], ARM
Compute Library [3] and NVIDIA cuDNN [11]. These libraries are
then used by machine learning frameworks such as TensorFlow [1],
PyTorch [33] and MXNet [8]. However, huge engineering efforts
are required to support the growing sets of models and backends,
and it takes iteration cycles for these libraries to adapt to the rapidly
changing and growing machine learning applications, which hin-
ders the evolution of new machine learning models.

In this paper, we propose to address the tensorized program op-
timization problem using a automatic compilation approach. Most
past works in machine learning compilation [9, 43] search over
a program space of loop nest transformations and do not handle
tensorized programs automatically. Bringing automatic program
optimization to tensorized programs would unlock the benefits
from domain-specific accelerations in modern hardware backends.
We identify the following key challenges to achieving this goal:

Abstraction for Tensorized Programs. To build an automated com-
piler for tensorized programs, we need an abstraction that can
pragmatically capture possible equivalent tensorized computations
for a given machine learning operator. Notably, the abstraction
needs to represent multi-dimensional memory accesses, threading
hierarchies, and tensorized computation primitives from different
hardware backends. The abstraction also needs to be expressive
enough to represent most of the operators of interest in machine
learning.

Large Design Space of Possible Tensorized Program Optimizations.
Another challenge is to produce an optimized tensorized program
for a given operator automatically. A compiler needs to make use
of a rich set of techniques that domain experts might use, includ-
ing making effective use of loop tiling, threading, and data layout
transformations. Importantly, these transformations now need to
be made in conjunction with tensorized computations, bringing ad-
ditional complexities to analysis and automation. The combinations
of these transformations form a large search space. We need an
effective way to find an optimized tensorized program for a given
search space.

To address these challenges, we introduce TensorIR, an abstrac-
tion for automatic tensor program optimization. To begin with, we
introduce a new construct called block that allows us to divide and
isolate tensorized computation region from the outer loop nests.
The new abstraction allows us to effectively represent tensorized
computations and combine them with loop nests, threading, and

memory hierarchy.We also introduce program transformation prim-
itives to express a rich space of potential optimizations. We build a
novel automatic scheduling algorithm on top of the abstraction and
transformation primitives. Additionally, TensorIR abstraction also
allows us to represent and optimize programs that contain a mix-
ture of irregular computations and tensor computations, expanding
the possible support beyond a normal tensor expression [9]. This
paper makes the following contributions:

• We propose a novel abstraction for tensorized programs that
separates tensorized computation from the loop transfor-
mations. Meanwhile, the same abstraction allows us to uni-
formly represent tensor intrinsics and hardware constraints.

• We build transformation primitives to generate a rich search
space of tensorized program optimization with correctness
validation.

• We design and implement a new tensorization-aware auto-
matic scheduler.

We integrate TensorIR with an end-to-end compilation framework
and show that it outperforms existing machine learning compila-
tion solutions by up to 7x and automatically brings competitive
performance to heavily optimized platform-specific solutions.

2 OVERVIEW
This section describes the key insights of our approach and gives
an overview of the paper. To motivate our approach, we start with
an example flow of how a domain expert optimizes a tensorized
program in Figure 2. Tensorized computation primitives usually
correspond to a sub-problem of the original tensor operator com-
putation. As a result, it is natural for domain experts to choose a
divide and conquer approach – divide the original program into
sub-problems of tensorized computation and loop nests that use the
tensorized computation, then optimize them separately. The divide
and conquer approach allows developers to focus on a sub-problem
without worrying about the others. Additionally, it also enables us
to target multiple tensorized computation implementations.

Most existing machine learning compilers take two kinds of ap-
proaches (Figure 3). Halide [35], TVM [9], Tiramisu [5], AKG [47],
MLIR/Affine [26] and AMOS [49] take a bottom-up approach that
models the search space using loop nests iterators around scalar
operation bodies, and then optimizes the program by finding the
best loop nest transformation (through search or polyhedral opti-
mization). HTA [16], Fireiron [17] and Stripe [46] use a top-down
approach that gradually decomposes the problem into sub-problems
through nested polyhedral structures. Given the significance of the
divide and conquer approach in manual tensorized program opti-
mizations, it is natural to ask whether it is possible to bring the
same insight to machine learning compiler design.

We give a positive answer in this paper. Specifically, we intro-
duce a new abstraction called block into the loop nests. A block
contains the right amount of signature information to isolate the
inner problem space and outer problem. With block, we can con-
tinue to perform transformations on both outer and inner problem
independently, using the block signature as the interface. Similar
to the manual divide and conquer approach, a common use case
of a block is to represent a tensorized computation primitive in a
hardware backend, but we can also use the block to isolate bigger
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for y, x, k in grid(64, 64, 64):

  C[y, x] += A[y, k] * B[k, x]

for yo, xo, ko in grid(16, 16, 16):

  matmul_add4x4(C, A, B, yo, xo, ko)

for yo, xo, ko in grid(16, 16, 16):

for yi, xi in grid(4, 4, 4):

C[...] += A[...] * B[...]

Divide the Problem into 
loop nests and matmul kernel 

Optimize Tensorized Computation Body

def matmul_add4x4_v1(C, A, B, yo, xo, ko):

for yi, xi in grid(4, 4):

C[yo*4+yi, xo*4+xi] += accel.dot(A[yo*4+yi, ko*4:ko*4+4], 

B[ko*4:ko*4+4, xo*4+xi])

Optimize Outer Loop Nests

def matmul_add4x4_v0(C, A, B, yo, xo, ko):

accel.matmul_add4x4(C[yo*4+yi, xo*4+xi], 

A[yo*4+yi, ko*4:ko*4+4], B[ko*4:ko*4+4, xo*4 + xi])

Operator Definition

for yo, xo, k in grid(4, 4, 16):

  for yi, xi in grid(4, 4):

    matmul_add4x4(C, A, B, yo*4 + yi, xo*4 + xi, k)

Figure 2: An expert developer can choose to divide the problem into 4x4 matmul and loops that uses the 4x4 matmul, then
optimize them separately. This way we can effectively make use of specialized tensor instructions in the target hardware.

Existing Approaches

Search space of loop transformations 
with scalar operations

for yo, xo, ko in grid(16, 16, 16):

  for y, x, ki in grid(4, 4, 4):

Scalar Loop Programs

Scalar body (MulAdd)

Scalar body (MulAdd)

C[yo*4+y, xo*4+x] +=

A[yo*4+y, ko*4+ki] * B[ko*4+ki, xo*4+x]

for y, x, k in grid(64, 64, 64):

  C[y, x] += A[y, k] * B[k, x]
Scalar body 
(MulAdd)

(a) Bottom-Up: loop transformation on scalar expressions

for y, x, k in grid(64, 64, 64):

  C[y, x] += A[y, k] * B[k, x] Introduce a key abstraction called block to 
divide and isolate the problem space into 
outer loop nests and tensorized body

Our Approach

for yo, xo, ko in grid(16, 16, 16):

for y, x, k in grid(4, 4, 4):

C[by*4+y, bx*4+x] +=

A[by*4+y, bk*4+k] * B[bk*4+k, bx*4+x]

block (by=yo, bx=xo, bk=ko)

Matmul(M, N, K)(GL, GL, GL)(Kernel)

Matmul(128, 128, K)(GL, GL, GL)(Block)

Init(128, 128, K)(RF=0)(Block)

Move(128, 128, K)(RF->GL)(Block)

Matmul(128, 128, K)(GL, GL, RF)(Block)

Matmul(1, 1, 1)(RF, RF, RF)(Thread) 

C[y, x] += A[y, k] * B[k, x]

(b) Top-Down: gradual decomposition

Search space of loops 
transformations with 
tensorized operations

for yo, xo, k in grid(4, 4, 16):

  for yi, xi in grid(4, 4):

Tensorized Programs

block (by, bx, bk=...)
Tensorized body (Matmul 4x4)

Tensorized body (matmul4x4)
isolated from the outer loop nests

(c) Divide and Conquer: divide the problem into outer loop nests and inner bodies, and solve them separately

Option 0: Tensorized body (Matmul 4x4)

accel.matmul_add4x4(

C[by*4:by*4+4, bx*4:bx*4+4],

A[by*4:by*4+4, bk*4:bk*4+4],

B[bk*4:bk*4+4, bx*4:bx*4+4])

Option 1: Tensorized body (Matmul 4x4)

for y, x in grid(4, 4):

  accel.dot(C[by*4+y, bx*4+x],

A[by*4+y, bk*4:bk*4+4],

B[bk*4:bk*4+4, bx*4+x])

Figure 3: Overview of our approach. We use a key abstraction named block to divide and isolate the tensorized computations,
and enables further loop transformations with tensorized operations.

sub-problems of interest when divide and conquer makes sense. Im-
portantly, tensor computation is the first-class citizen in TensorIR.
Loop nests with blocks can be viewed as a generalized abstraction
of iteration space. We present the detailed design of the TensorIR
abstraction in section 3.

To automate the tensorized program optimization, we construct
a search space of possible ways to divide the problem guided by the
hardware tensor computation primitives, then further search over
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@script

def fuse_add_exp(

    A: Buffer[(64, 64), "float32"],

    C: Buffer[(64, 64), "float32"],

):

    B = alloc_buffer((64, 64), "float32")

    for i, j in grid(64, 64):

        with block("block_B"):

            vi = spatial_axis(64, i)

            vj = spatial_axis(64, j)

            B[vi, vj] = A[vi, vj] + 1

    for i in range(64):

        with block("block_C"):

            vi = spatial_axis(64, i)

            for j in range(64):

                C[vi, j] = exp(B[vi, j])

Computation: C = exp(A + 1)

Loop nests

Computational 
block

Multi-dimensional 
buffer

Figure 4: An example TensorIR program with three major
elements - multi-dimensional buffers, loop nests and com-
putational block. Details of block is omitted for simplifica-
tion.

possible ways to solve sub-problems using program transforma-
tions. We present the automatic scheduling algorithm for tensorized
programs in section 4.

Our divide and conquer covers the search space of previous
compiler approaches (bottom-up, top-down) and generalizes the
typical optimization techniques in HPC and ML engineering to
an abstraction that allows automatic tensorization. We automate
decisions common in library and compilation pipeline, enabling
us to automatically generate competitive solutions with vendor-
specific libraries. We present the experiment results in section 5.

3 TENSORIR ABSTRACTION
This section introduces the TensorIR abstraction. Figure 4 gives an
example of TensorIR program.We introduce a Python-AST (abstract
syntax tree) dialect of TensorIR to let developers directly construct
and transform programs in Python. A TensorIR program contains
three main elements: multi-dimensional buffers, loop nests (with
possible thread bindings in GPU settings), and blocks. A block can
contain one or more nested loop nests with sub-blocks or sequence
of imperative statements that correspond to the content of the
computation. This representation allows us to divide computations
into the corresponding sub(block)-regions and do effective program
transformations using dependency information stored in the block
signature. We discuss the design details in §3.1.

3.1 Block
A block in TensorIR represents a tensorized computation on a sub-
region of the multi-dimensional buffers. Figure 5 shows an example
block for the matrix multiplication (matmul) computation. The

for yo, xo, ko in grid(16, 16, 16):

  with block():

    vy, vx, vk = ...

    block_siguatures

    with init():

      for y, x in grid(4, 4):

        C[vy*4+y, vx*4+x] = 0.0

    for y, x, k in grid(4, 4, 4):

      C[vy*4+y, vx*4+x] +=

        A[vy*4+y, vk*4+k] * B[vk*4+k, vx*4+x]

outer loop

body

Producer-consumer dependency relations

signatures

Block Signature

read  A[vy*4:vy*4 + 4, vk*4:vk*4 + 4]

read  B[vk*4:vk*4 + 4, vx*4:vx*4 + 4]

write C[vy*4:vy*4 + 4, vx*4:vx*4 + 4]

vy: spatial_axis(length=16, binding_value=yo) 

vx: spatial_axis(length=16, binding_value=xo) 

vk: reduce_axis (length=16, binding_value=ko) 

init stmt

Iterator domain and binding values

Figure 5: Blocks contain complete signature for dependency
analysis and we make it an isolation level between body
computation and outer loop nesting.

body of a block is parameterized by a set of block iterator variables
𝑣𝑦, 𝑣𝑥 , 𝑣𝑘 which represents an abstract tensorized computation. In-
stantiated with different value combinations of these block iterator
variables, the block maps to different concrete running block in-
stances. These iterator variables can be bound to expressions that
contain the outer loop iterators, which implies the execution order
of block instances.

Rationale. The main design rationale of a block is to isolate ten-
sorized computation – we want to be able to transform loop nests
outside the block without looking into its body. However, unlike
scalar computation, we may not be able to extract the dependency
information needed for transformation from an opaque tensor com-
putation body. As a result, we introduce a block signature that
contains sufficient dependency information for transformations.
We discuss these transformations in §3.2. Additionally, the signa-
ture can be used to independently verify the correctness of the
iterator bindings during transformations (more details in §3.3).

Block Iterator Domain. While it is possible to instantiate a block’s
body computation by binding the block iterators to any loop nests,
most instantiations do not correspond to the same computation.
To ensure the consistency of computation among transformations,
we store the iterator domain information and the constraints of
iterators in the block signature. For the particular example in Fig-
ure 5, we know that 𝑣𝑥 , 𝑣𝑦 and 𝑣𝑘 must bind to iterators in domain
[0, 16). Additionally, because 𝑣𝑘 is a reduction axis, we know that
we cannot bind it to a parallel loop unless the reduction is atomic.
The domain constraints still leave massive room for outer loop
transformations, as there are multiple ways to construct loops that

Highlight
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satisfy the constraint. Our domain signature can be viewed as a
specific way to represent the integer domain sets and relations of
the iterators. We choose the particular representation due to its
implementation efficiency and simplicity in reasoning, but would
also point out that the same design philosophy applies to other
formal domain representations of integer sets and relations [42].

Access Region and Dependency. To provide sufficient dependency
information, a block signature contains the access regions and
read/write dependencies that a block has with respect to the mul-
tiple dimensional buffers. In Figure 5, the block writes the region
𝐶 [𝑣𝑦 ∗ 4 : 𝑣𝑦 ∗ 4 + 4, 𝑣𝑥 ∗ 4 : 𝑣𝑥 ∗ 4 + 4] by reading 𝐴[𝑣𝑦 ∗ 4 :
𝑣𝑦 ∗ 4 + 4, 𝑣𝑘 ∗ 4 : 𝑣𝑘 ∗ 4 + 4], 𝐵 [𝑣𝑘 ∗ 4 : 𝑣𝑘 ∗ 4 + 4, 𝑣𝑥 ∗ 4 : 𝑣𝑥 ∗ 4 + 4].
The dependency information is used during transformations. We
only mark each block’s dependency with respect to the multi-
dimensional buffers instead of other statements (blocks). This indi-
rection enables a broader range of transformations, such as data
layout transformation and re-computation which are essential in
tensorized program optimization.

Reduction Block and Initialization. A reduction computation usu-
ally contains an initialization step and an update step. We can
naturally map the reduction computation into two blocks. But, on
the other hand, it is usually helpful to jointly make the scheduling
decisions (such as tiling and computation location) of the two steps.
We introduce an optional initialization statement for blocks that per-
form reduction. An initialization statement is executed during the
first iteration of a reduction. This reduction block representation is
mainly useful during transformations. We provide transformation
primitives to transform between the two-block-based representa-
tion and the init-block-based representation so we can pick the best
representation for low-level code generation.

3.2 Scheduling Transformations
For a given input program, we need to generate a rich search space
of programs with equivalent semantics. We introduce primitives to
transform a TensorIR program to equivalent optimized programs.
Following the existing convention of tensor program optimiza-
tions [5, 9, 35], we call this procedure scheduling.

A block is schedulable if it only contains loop nests with sub-
blocks as its leaves. We can transform the loop nests and sub-block
computation locations within a schedulable block by analyzing the
sub-block signatures and their dependency information. Notably,
a schedulable block can contain non-schedulable sub-blocks (e.g.,
opaque Tensor Core computation). An opaque block can also con-
tain a schedulable sub-block. Based on the block isolation, we can
still effectively explore the search space of the schedulable part
independently while keeping the same opaque block. We describe
the schedule primitives in the rest part of this subsection.

Loop Transformations. Loop transformations such as loop tiling (split,
reorder) and compute location mutation are important ways to op-
timize programs for better memory locality. We also provide these
loop transformation primitives (see examples in Figure 6). Unlike ex-
isting tensor compilers that directly extract the dependency of each
leaf scalar computation statement, we calculate the dependencies
by only inspecting the block signature. Besides loop transforma-
tions, we also support primitives that bind loops to GPU threads

for i, j in grid(64, 64):

C[vi, vj] = dot(A[vi, :], B[:, vj])

for i, j in grid(64, 64):

D[vi, vj] = max(C[vi, vj], 0)

block_C (vi, vj = i, j)

block_D (vi, vj = i, j)

for i0, j0 in grid(8, 8):

  for i1, j1 in grid(8, 8):

    C[vi, vj] = dot(A[vi, :], B[:, vj])

for i, j in grid(64, 64):

  D[vi, vj] = max(C[vi, vj], 0)

Loop Tiling

Reverse
Compute_at

block_C(vi, vj = i0*8 + i1, j0*8 + j1)

block_D (vi, vj = i, j)

for i0, j0 in grid(8, 8):

  for i1, j1 in grid(8, 8):

    C[vi, vj] = dot(A[vi, :], B[:, vj])

  for i1, j1 in grid(8, 8):

    D[vi, vj] = max(C[vi, vj], 0)

block_D(vi, vj = i0*8 + i1, j0*8 + j1)

block_C(vi, vj = i0*8 + i1, j0*8 + j1)

Figure 6: Loop transformations mutate outside loop nests
but change nothing inside the block.

for i, j, k0 in grid(64, 64, 16):

  for k1 in range(4):

    C[vi, vj] += A[vi, vk] * B[vk, vj]

block (vi, vj, vk = i, j, k0*4 + k1)

for i, j, k0 in grid(64, 64, 16):

  for k1 in range(4):

    C[vi, vj] += A[vi, vk] * B[vk, vj]

blockized (vi0, vj0, vk0 = i, j, k0)

Blockize

block (vi, vj, vk = vi0, vj0, vk0*4 + k1)

Figure 7: Blockization creates a new block to isolate inside
computation and outside loop nesting.

and provide annotation hints such as vectorization and unrolling.
Note that the block isolation does not prevent many important
collaborative optimization across blocks (e.g. inlining, cooperative
fetching). Our loop transformations cover the loop transformations
provided by previous works which allows TensorIR to reproduce
their search space as mentioned in section 2.

Blockization. The loop transformation primitives preserve the
overall hierarchy of blocks. As we alluded in section 2, sometimes
dividing the problem by isolating a sub-region computation into a
new sub-block is helpful. We call this transformation blockization
Figure 7. A blockized program is no longer scalar-based as the
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for y0, x0 in grid(?, ?, ?):

  for y1, x1, k0 in grid(?, ?, ?):

    for y2, x2, k1 in grid(?, ?, ?):

            for y3, x3, k0 in grid(?, ?):

  for y1, x1 in grid(?, ?):

    C.cache[...] = C[...]

for y1, x1 in grid(?, ?, ?):

  D[...] = max(C[...], 0)

Input Tensorization Candidate 
Generation

(Sec 4.2)

Tensorized Program
Sketch Generation

(Sec 4.3)

for y, x, k in grid(64, 64, 64):

  C[y, x] += A[x, k] * B[k, y]

for y, x in grid(64, 64):

  D[y, x] = max(C[y, x], 0)

Evolutionary Search 
(Sec 4.4)Validation (Sec 4.4)

Tensorized program sketches
Tensor Intrinsics  (Sec 4.1)

Tensorization candidates

Tensorization candidates

Tensorized program 
sketches

# semantics (matmul4*4)

for y, x, k in grid(4, 4, 4):

  C[y, x] += A[x, k] * B[k, y]

# implementation (dot)

for yi, xi in grid(4, 4):

  C[yo*4+yi, xo*4+xi] +=

    accel.dot(

      A[xo*4+xi, ko*4:ko*4+4],

      B[ko*4:ko*4+4, yo*4+yi])

for y0, x0 in grid(?, ?):

  for y1, x1, k0 in grid(?, ?, ?):

    for y2, x2, k1 in grid(?, ?, ?):

      for y3, x3 in grid(?, ?):

  for y1, x1 in grid(?, ?):

    for y2, x2 in grid(?, ?):

      D.cache[...] = max(C.cache[...], 0)

block (matmul4x4)

Computation body (matmul4x4)

block (AutoCopy)
Data movement body (A->A.cache)

block (AutoCopy)
Data movement body (B->B.cache)

 for y2, x2 in grid(?, ?):

    A.cache[...] = A[...]

Data movement body (D.cache->D)
block (AutoCopy)

for y, x, k in grid(4, 4, 4):

    C[y, x] += A[x, k] * B[k, y]

for yo, xo, ko in grid(16, 16, 16):

for y, x in grid(64, 64):

  D[y, x] = max(C[y, x], 0)

block (matmul4x4)
Computation body (matmul4x4)

Sub-computation

for yi, xi in grid(4, 4):

  C.cache[yo*4+yi, xo*4+xi] +=

    accel.dot(

      A.cache[xo*4+xi, ko*4:ko*4+4],

      B.cache[ko*4:ko*4+4, yo*4+yi])

Sub-computation (tensorized)

 for y2, x2o in grid(?, ?):

   for vec in vectorized(?):

     A.cache[...] = A[...]

Data movement (before schedule)

Data movement (after schedule)

TensorIntrin (matmul4x4)

Figure 8: Automatic optimization for tensorized program with hardware intrinsics. We take 64x64x64 matrix multiplication
followed by a RELU operator as the input workload and 4x4x4 matmul as the synthetic tensor intrinsic which is implemented
by a dot product instruction. The tensorization candidate generation step tiles the 64x64x64 GEMM into 4x4x4 sub-tiles and
isolate the sub-computation. Then the tensorized program sketch generation step schedules the computation and insert the
resulting data movement (AutoCopy) blocks which are scheduled independently. Finally, we use evolutionary search to fill
the random decisions in sketches with a validation mechanism to filter out incorrect programs.

new sub-block corresponds to a tensorized computation. We can
use blockization to isolate possible candidates for tensorization.
Besides blockization, we also introduce primitives that can change
the block hierarchies. For example, we provide caching primitives
that introduce sub-blocks to cache input data into shared memory.
We also provide back and forth transformations between a single
reduction block and the corresponding init- and update blocks.

Separation of Scheduling and TensorIR. Many previous tensor
compilers [9, 35] rely on a declarative scheduling language to con-
struct a schedule tree. Adding new scheduling primitives to these
compilers requires changes to both the schedule tree data structure
and the corresponding lowering rule in these compilers. We take
a different approach and implement each schedule primitive as a
standalone transformation from one TensorIR program to another.
This design is easier to extend, as different developers can develop
new primitives concurrently based on a stable TensorIR abstraction.
Additionally, developers can print out the program at any trans-
formation stage for debugging and mix automatic rewriting with
schedule transformations.

3.3 Validation
The blocks and their buffer read/write relations capture a complete
picture of the original computation and are used to validate the
correctness of loop nests and threading assignments.

Loop Nest Validation. Loop nest validation checks whether the
iterator binding provided by the loop nests matches the constraints
of the iterator domain, including the domain size and iterator in-
dependence information. For example, if two data-parallel block
iterators are bound as 𝑣1 = 𝑖; 𝑣2 = 𝑖 ∗ 2, then the correspond-
ing program is invalid because 𝑣1 and 𝑣2 are not independent. But
𝑣1 = 𝑖/4; 𝑣2 = 𝑖%4 can be a legal binding. We build pattern-matchers
to find a quasi-affine mapping from the loop iterators to the block
iterator variables and use the pattern to validate the independence
and domain of the bindings. Besides the iterator domain validation,
it is also important to check the producer-consumer relations to
make sure producer blocks that write to buffer regions always cover
the read region of downstream consumers.

Threading Validation. When building a program for GPUs and
other accelerators with threading support, we also need to do ad-
ditional validations with respect to the threading and memory
hierarchies. We do three kinds of validations:
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• Thread binding: Ensure different iterators bound to the
same thread are consistent and meet the launching con-
straints of the backend.

• Cooperativememory access: For blocks that produce buffers
stored in shared memory collaboratively across threads, we
need to ensure the block covers downstream requirements
from all the threads in the same group. Meanwhile, upstream
blocks that provide inputs for this block need to cover the
read requirement of this block from all the threads in this
group.

• Execution scope: Validate that tensor intrinsic runs at the
correct execution scope (e.g., TensorCore needs to run at the
warp-level).

Correctness of Schedule Primitives. We add checks to each sched-
ule primitive to ensure the correctness of the transformation. When
a schedule primitive only changes the loop nests, we can also use
the validation procedure to ensure correctness. Because the block it-
eration domains and dependencies stay the same in these cases. We
find primitive-specific necessary conditions for schedule primitives
that change the blocks (e.g., blockization).

Note that loop nest validation and threading validation are used
as checks to filter out invalid TensorIR programs and schedule
primitive checks are used to ensure the equivalence of TensorIR
programs before and after transformations. Users will get warning
or error information when they are incorrectly manually crafting,
importing and scheduling TensorIR programs. When users use
the compiler to generate programs automatically which will be
discussed in section 4, validation can help filter out false positive
cases during the exploration in the search space. Hence, both user
programs and compiled programs will benefit from the validation.

3.4 Programming Effort
As shown in Figure 4, we provided a Python-AST dialect of Ten-
sorIR to allow developers directly construct, dump, inspect, modify,
and transform TensorIR programs in Python. The program effort
will be high if users need to specify all the computation and opti-
mizations manually. Our framework allows users to import models
from TensorFlow/PyTorch and automatically generates TensorIR
programs from the high-level operators. Additionally, the system
automatically provides the optimizations, such as tiling and caching,
for a given hardware platform through the auto-scheduling (Section
section 4). We still allow users to write TensorIR in Python dialect
when they want customized operators. In these cases, the system
provides optimization transformations automatically. As a result,
the programming effort is usually minimized.

4 AUTO-SCHEDULING TENSORIZED
PROGRAMS

In the last section, we introduced TensorIR abstraction and a set
of transformation primitives. In order to fully make use of the
set of improvements, we need an automatic solution to optimize
over a set of transformations and map computations to the native
tensor intrinsics. In this section, we describe a tensorization-aware
automatic scheduler to solve this problem.

Figure 8 shows an overview of our approach. Our system takes
a workload description from users and tensor intrinsic descriptions

about the hardware platform as inputs. The auto-scheduler first
generates candidates for tensorization by inspecting the compu-
tation pattern. It then generates program sketch candidates that
use the tensorized computations and then decide the data move-
ments according to the compute patterns. For a given search space
induced by the tensorized program sketches, we perform evolu-
tionary search guided by a learning-based cost model. The entire
process centers itself around the tensorization and leverages the
new block abstraction to isolate tensorized computations. We dis-
cuss the details of each step in the subsequent subsections.

4.1 Abstraction for Tensor Intrinsics
To make use of a tensor intrinsic in our optimization, we need a
way to provide its semantics and backend implementation to the
system. We leverage the same TensorIR abstraction to describe the
tensor intrinsics of a given hardware backend. For each tensorized
instruction, we introduce a TensorIntrin construct composed of
two blocks. One block describes the computation semantics, and
the other provides the low-level implementation of the tensorized
computation.

In Figure 8’s example, we use a normal loop nest with scalar body
𝐶 [𝑖, 𝑗] += 𝐴[𝑖, 𝑘] ∗ 𝐵 [𝑘, 𝑗] to represent the computation semantics
and implement the intrinsic using inner dot product instruction
𝑎𝑐𝑐𝑒𝑙 .𝑑𝑜𝑡 . We also include the data type, storage scope, memory
layout, and contiguity constraints through the multi-dimensional
buffer specification in a TensorIntrin. Those constraints are used
during the validation step.

Notably, tensor intrinsics are usually applied together with spe-
cial memory scopes, data layouts, and corresponding load/store
instructions in common platforms. For instance, on NVIDIA GPUs,
if we decide to use nvcuda::wmma::mma_sync API to perform dense
computation, thenwe need to apply nvcuda::wmma::load_matrix_sync
and nvcuda::wmma::store_matrix_sync to prepare input operands
and retrieve output results respectively. On ARM CPUs, micro-
kernels like a64_gemm_u8_8×12 require operands to be stored in
interleaved layout. Developers can inform the system about these
constraints by specifying special storage scopes for each input and
output operands of the tensor computation.

4.2 Tensorization Candidate Generation
Given a pair of backend target and an input program, we first match
the program body to possible TensorIntrin to generate tensoriza-
tion candidates. The match is performed in a gradual way. We first
match the expression pattern𝐶 [.] += 𝐴[.] ×𝐵 [.] without consider-
ing the indices. We then refine the matches by proposing possible
mappings between the indices. Figure 9 gives an example that walks
through the matching process. In this example, we take a matrix
multiplication intrinsic as the backend description. The compu-
tation of this tensor intrinsic can be described by the following
formula

𝐶 [𝑥,𝑦] += 𝐴[𝑥, 𝑘] × 𝐵 [𝑘,𝑦] (1)

It is easy for us to match the tensor intrinsic to workloads like batch
matrix multiplication, which can be described by

𝐶 [𝑏, 𝑖, 𝑗] += 𝐴[𝑏, 𝑖, 𝑟 ] × 𝐵 [𝑏, 𝑟, 𝑗],
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for n, h, w, c, rh, rw, rc in grid(...):

  C[n, h, w, c] += 

    A[n, h*2+rh, w*2+rw, rc] 

  * B[c, rh, rw, rc]

for x, y, k in grid(16, 16, 16):

  C[x, y] += A[x, k] * B[y, k]

Conv2D

TensorIntrin

ReIndex

Conv2D (ReIndexed)
# ReIndex Block for A

for n, h, w, c, rh, rw, rc in grid(...):

  Ar[n, h, w, rh, rw, rc] 

    = A[n, h*2+rh, w*2+rw, rc]

# ReIndex Block for B

for c, rh, rw, rc in grid(...):

  Br[c, rh, rw, rc] = B[c, rh, rw, rc]

# ReIndexed Conv2D

for n, h, w, c, rh, rw, rc in grid(...):

  Cr[n, h, w, c] += Ar[n, h, w, rh, rw, rc] 

                  * Br[c, rh, rw, rc]

# ReIndex Block for C

for n, h, w, c in grid(...):

  C[n, h, w, c] = Cr[n, h, w, c]

Conv2D (ReIndexed)
Cr[n, h, w, c] += 

  Ar[n, h, w, rh, rw, rc] 

* Br[c, rh, rw, rc]

TensorIntrin
C[x, y] += A[x, k] * B[y, k]

𝜒(n) = 𝜒(h) = 𝜒(w) = [1,1,0]
𝜒(c) = [1,0,1]
𝜒(rh) = 𝜒(rw) = 𝜒(rc) = [0,1,1]

𝜒(x) = [1,1,0]
𝜒(y) = [1,0,1]
𝜒(k) = [0,1,1]

Conv2D (Layout Transformed)
# Layout Transformation Block for A

for n, h, w, c, rh, rw, rc in grid(...):

  At[n*h*w, rh*rw*rc] 

    = A[n, h*2+rh, w*2+rw, rc]

# Layout Transformation Block for B

for c, rh, rw, rc in grid(...):

  Bt[c, rh*rw*rc] = B[c, rh, rw, rc]

# Transformed Conv2D

for nhw, c, rhwc in grid(...):

  Ct[nhw, c] += At[nhw, rhwc] * Bt[c, rhwc]

# Layout Transformation Block for C

for n, h, w, c in grid(...):

  C[n, h, w, c] = Ct[n*h*w, c]

Propose Match TransformLayout

Figure 9: Example flow of tensorization candidate generation. We take standard NHWC 2D convolution as the input workload
and 16x16x16matrixmultiplication as the hardware backend intrinsic. First, the system converts the buffer access expressions
to intermediate iterators. Based on the buffer access patterns, we calculate characteristic functions for each iterator and build a
mapping between iterators that share the same characteristic vector. The mapping further guides the transformation of block
instance space and ReIndex buffers. Note that although the ReIndex stages of B and C are redundant, they will be inlined into
consumers during the sketch generation phase and as a result do not affect the performance.

by mapping 𝑥,𝑦, 𝑘 to 𝑖, 𝑗, 𝑟 . But for workloads like 2-dimensional
Convolution (Conv2D) with more complex index expression pat-
terns

𝐶 [𝑛,ℎ,𝑤, 𝑐𝑜] +=𝐴[𝑛,ℎ ∗ 𝑠ℎ + 𝑟ℎ ∗ 𝑑ℎ,𝑤 ∗ 𝑠𝑤 + 𝑟𝑤 ∗ 𝑑𝑤 , 𝑟𝑐 ]
×𝐵 [𝑟𝑐 , 𝑟ℎ, 𝑟𝑤 , 𝑐𝑜],

the mapping between 𝑥,𝑦, 𝑘 and 𝑛,ℎ,𝑤, 𝑐, 𝑟ℎ, 𝑟𝑤 , 𝑟𝑐 is not straight-
forward.

On these more general cases, we rewrite the computation ex-
pression into an equivalent form:

𝐶 [𝑛,ℎ,𝑤, 𝑐𝑜] += 𝐴𝑟 [𝑛,ℎ,𝑤, 𝑟ℎ, 𝑟𝑤 , 𝑟𝑐 ] × 𝐵 [𝑟𝑐 , 𝑟ℎ, 𝑟𝑤 , 𝑐𝑜],
𝐴𝑟 [𝑛,ℎ,𝑤, 𝑟ℎ, 𝑟𝑤 , 𝑟𝑐 ] = 𝐴[𝑛,ℎ ∗ 𝑠ℎ + 𝑟ℎ ∗ 𝑑ℎ,𝑤 ∗ 𝑠𝑤 + 𝑟𝑤 ∗ 𝑑𝑤 , 𝑟𝑐 ] .

We call this transformation ReIndex which uses intermediate itera-
tors that appear in the buffer access indices to rewrite the buffer
access expressions. To match the new computation to the tensor in-
trinsic, we check the buffer access where each iterator appears. For
example, we notice that 𝑛,ℎ,𝑤 and 𝑥 appear in indices of 𝐴(𝐴𝑟 ),𝐶 ,
𝑐𝑜 and 𝑦 appear in indices of 𝐵,𝐶 , and 𝑟ℎ, 𝑟𝑤 , 𝑟𝑐 and 𝑘 appear in
indices of 𝐴,𝐶 . We can then match the iterators in the compu-
tation to the iterators in the tensor intrinsic by inspecting their
appearance patterns. Specifically, we map fuse(𝑛,ℎ,𝑦) to 𝑥 , 𝑐𝑜 to
𝑦, and fuse(𝑟ℎ, 𝑟𝑤 , 𝑟𝑐 ) to 𝑘 . Here fuse() is to fuse multiple iterators
together and can be recursively defined by

fuse(𝑖1) = 𝑖1

fuse(𝑖1, 𝑖2, . . . , 𝑖𝑟 ) = fuse(𝑖1, 𝑖2, . . . , 𝑖𝑟−1) ∗ extent(𝑖𝑟 ) + 𝑖𝑟 ,

where extent() is the extent of iterator 𝑖𝑟 . We can then transform
the computation to

𝐶𝑡 [fuse(𝑛,ℎ,𝑤), 𝑐𝑜] +=𝐴𝑡 [fuse(𝑛,ℎ,𝑤), fuse(𝑟ℎ, 𝑟𝑤 , 𝑟𝑐 )]
×𝐵𝑡 [fuse(𝑟ℎ, 𝑟𝑤 , 𝑟𝑐 ), 𝑐𝑜],

where

𝐶𝑡 [fuse(𝑛,ℎ,𝑤), 𝑐𝑜] =𝐶 [𝑛,ℎ,𝑤, 𝑐𝑜],
𝐴𝑡 [fuse(𝑛,ℎ,𝑤), fuse(𝑟ℎ, 𝑟𝑤 , 𝑟𝑐 )] =𝐴𝑟 [𝑛,ℎ,𝑤, 𝑟ℎ, 𝑟𝑤 , 𝑟𝑐 ]

𝐵𝑡 [fuse(𝑟ℎ, 𝑟𝑤 , 𝑟𝑐 ), 𝑐𝑜] =𝐵 [𝑟ℎ, 𝑟𝑤 , 𝑟𝑐 , 𝑐𝑜] .

We use this mapping to reshape the block instance space and the
outer loops and transform the layout of ReIndex buffers. We insert
layout rewrite blocks to rewrite 𝐴, 𝐵,𝐶 to 𝐴𝑡 , 𝐵𝑡 ,𝐶𝑡 respectively
and use 𝐴𝑡 , 𝐵𝑡 ,𝐶𝑡 to rewrite the computation body. After these
steps, the computation body is compatible with the tensor intrinsic.

Loop Reorganization and Early Blockize. Besides the computation
body, we also need to ensure that the tensor computation region
matches the description provided by the TensorIntrin. The shape of
the reorganized block instance space might not be divisible by the
sub-problem size of the tensor intrinsic. For each computation body
from the last step, we do necessary padding on the computation
block and input/output operands to the closest divisible shape. We
then perform tiling to create inner loops to match the loop nest of
the tensor intrinsic and further blockize the inner loop to isolate
the corresponding tensor computations. Notably, the candidates
generated in this step do not always lead to successful tensoriza-
tions. This is because other constraints, such as memory layout
and threading depend on later transformations. These constraints
are embedded in the tensorization candidates and checked during
validation.

Formal Description of the Process. So far we gave a high-level
overview of the tensorization candidate generation process. In the
the remainder part of this subsection, we provide a formal descrip-
tion of the process. Suppose the intrinsic scalar expression can be
formalized as

𝑂 [v0] = 𝑓 (𝑂 [v0], 𝐼1 [v1], 𝐼2 [v2], . . . , 𝐼𝑘 [v𝑘 ]). (2)
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where 𝑂 is the output operand, 𝐼 [1:𝑘 ] are input operands, v is the
set of iterators that parameterized this computation, v[0:𝑘 ] are all
lists of iterators that belong to v, and 𝑓 is the expression pattern
detected. Note that it accommodates common dot product and
matrix multiplication intrinsics. Furthermore, suppose that the
workload scalar expression can be formalized as

�̃� [𝑔0 (ṽ0)] = 𝑓 (�̃� [𝑔0 (ṽ0)], 𝐼1 [𝑔1 (ṽ1)], . . . , 𝐼𝑘 [𝑔𝑘 (ṽ𝑘 )]),

where �̃� , 𝐼 [1:𝑘 ] , ṽ[0:𝑘 ] corresponds to their counterparts and 𝑓 is
exactly the same. 𝑔 [0:𝑘 ] are mappings that map lists of iterators to
the actual buffer access position. In our Conv2D case, for instance,
we have𝑔𝐴 (𝑛,ℎ,𝑤, 𝑟ℎ, 𝑟𝑤 , 𝑟𝑐 ) = (𝑛,ℎ∗𝑠ℎ+𝑟ℎ∗𝑑ℎ,𝑤∗𝑠𝑤+𝑟𝑤∗𝑑𝑤 , 𝑟𝑐 ) .

To reduce the problem to a simpler canonical form, we apply the
ReIndex schedule transformation, which creates an intermediate
cache buffer for an operand but with the layout changed according
to the iterators. Formally, if we run ReIndex 𝐼1 [𝑔1 (ṽ1)], we create
the following rewrite block before the computation

𝐼1 [ṽ1] = 𝐼1 [𝑔1 (ṽ1)] .
Then if we apply ReIndex to all the operands, the workload scalar
expression is reduced to

�̂� [ṽ0] = 𝑓 (�̂� [ṽ0], 𝐼1 [ṽ1], . . . , 𝐼𝑘 [ṽ𝑘 ]), (3)

where buffer access indices in both 2 and 3 directly correspond to
iterators.

To match 2 and 3, we define the characteristic vector 𝜒 (𝑣) ∈
{0, 1}𝑘+1 of an iterator 𝑣 ∈ v by inspectingwhether each of v0, v1, v2, . . . v𝑘
contains 𝑣 . Formally,

𝜒 (𝑣)𝑖 = [𝑣 ∈ v𝑖 ] 𝑖 ∈ [0, 𝑘],
where [] is the Iverson bracket that returns 1 if the corresponding
condition is true or 0 otherwise (Figure 9). We can successfully
propose the mapping as long as ∀𝑣 ∈ v, ∃𝑣 ∈ ṽ, 𝜒 (𝑣) = 𝜒 (𝑣). In the
current implementation, we can further safely assume that iterators
in v all have different characteristic vectors. Then for all 𝑣 ∈ v, we
fuse all such 𝑣 where 𝜒 (𝑣) = 𝜒 (𝑣) and map the fused iterator to 𝑣 .

Notably, the iterator order inside each of v[0:𝑘 ] or ṽ[0:𝑘 ] does
not affect the value of characteristic function 𝜒 or 𝜒 . But when we
fuse all 𝑣 where 𝜒 (𝑣) = 𝜒 (𝑣), the order of fusion affects how the
operands are reorganized in memory to be compatible with the
tensor intrinsic. Our implementation now uses a default order for
all the workloads and can generalize to different fusion orders in
the future.

4.3 Tensorized Program Sketch Generation
For a given set of tensorization candidates, we need to construct
a large program search space that contains the tensorization. We
generalize existing hierarchical search space generation [48] to
tensor computations. We construct the search space by generating
program sketches that contain the tensorized computation, then
enumerate over choices induced by the generated sketches. As
shown in the right part in Figure 8, a program sketch fixes parts of
program structures while leaving space for remaining choices of pa-
rameters such as loop tiling size and computation caching decisions.
We generate sketches by applying pre-defined sketch generation
rules iteratively. Importantly, we need to build sketch generation
rules that work on tensorized computations by looking at the block

signatures and make use of the access region information during
our analysis.

Data Movement as First-Class Citizen. Existing auto-schedulers
for tensor programs focus their designs on the schedule of compu-
tations and treat data movement between different memory scopes
with secondary priority. However, since tensor intrinsics vastly
improve the throughput of computations, data movements become
the bottleneck of tensor programs. Moreover, data movement de-
cisions usually depend on computation schedule decisions like
tilings, thread bindings, execution scopes, and producer-consumer
data flow granularity. We take these insights and bring data move-
ments as first-class citizens in our automatic scheduler and decouple
them from computation schedules. Specifically, we insert AutoCopy
blocks into the places where the sketch generation rules decide to
perform data movements (Figure 8). The copy block hides the mem-
ory schedule details and only exposes the necessary buffer access
information at the block signature level. The isolated copy blocks
allow the sketch generation to independently make computation
schedule decisions without considering how to do data movements.
The body of the AutoCopy block describes the details of the data
movement task, including buffer position mapping, threading, and
storage scope requirements. A data movement scheduler takes this
information as input and performs memory-related schedule trans-
formations, such as inserting intermediate cache stages, utilizing
data movement tensor intrinsics, vectorization, cooperative fetch-
ing, or stride padding to avoid bank conflicts.

4.4 Evolutionary Search
After the tensorized program sketch generation phase, we can get
billions of possible induced programs. We use evolutionary search
to explore the space and find an optimized tensorized program.
Our search starts from random initializations of choices for given
program sketches. We then perform mutations on the current set
of programs. We then select promising programs from the mutated
candidates and benchmark them on our hardware backend of inter-
est. We collect data from the evaluation phase to update the learned
cost model.

Cost Model for Tensorized Computation. We build a boosting tree
ensemble [7] based cost models that use features extracted from
the program. The feature vector contains information related to
memory access patterns, reuse, and loop annotations. Importantly,
we extract features from both block signatures in an isolated way
as well as the body of the block (e.g., to mark the use of Tensor
Core). Our cost model can be viewed as a generalization of pre-
vious approaches to tensorized programs. We believe an effective
cost model for tensorized programs is a promising area for future
research.

Validation. Randomly mutating programs during the search can
generate invalid programs due to the unmet constraints of tensor
intrinsic or invalid loop nest candidates. The possibility of false
positives necessitates a validation step during the search. We apply
techniques in subsection 3.3 to validate a program candidate in the
evolutionary search to identify and reject invalid programs. The
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validation step reduces the burden on evolutionary search algo-
rithms and allows us to generate a small number of false positives
during the search.

5 EVALUATION
We implement TensorIR on top of Apache TVM [9]. Notably, the
insights described in the paper can benefit other machine learning
compilation frameworks as well. This section provides evaluations
to answer the following questions:

• Can TensorIR optimize common set of machine learning
operators (§5.1)?

• Can TensorIR bring performance boost to end-to-end net-
work execution (§5.2)?

• Can TensorIR support tensor intrinsics on different hardware
platforms (§5.3)?

To evaluate TensorIR along those axes, we compare our solution
to existing machine learning compilation solutions on GPU and
CPU platforms. We will discuss the specific setups in the corre-
sponding subsections.

Additionally, we are interested in the following question through-
out all evaluations: How does TensorIR compare to vendor-specific
libraries and frameworks that rely on these libraries? Importantly,
most of these libraries are heavily optimized by a dedicated team
of engineers. In all of these settings, TensorIR performs end-to-
end automatic optimization without the need to call into external
libraries.

5.1 Single Operator Evaluation
This section evaluates TensorIR on operators in deep learning mod-
els. We pick a common collection of workloads, including: 1D con-
volution (C1D), 2D convolution (C2D), 3D convolution (C3D), depth-
wise convolution (DEP), dilated convolution (DIL), general matrix
multiply (GMM), group convolution (GRP), and transposed 2D con-
volution (T2D). The evaluations are done on an NVIDIA RTX 3080
platform with Tensor Cores. We pick this platform as it has a wide
spectrum of machine learning compiler solutions and libraries that
we can use as comparison reference points. We use float16 as the
input and accumulator data type for all operators. We include TVM
(commit: 27b0aad5, with auto-scheduler [48]) and AMOS (commit:
6aee6fe2) as two machine learning compiler baselines. Finally, we
compare against two vendor-specific solutions: CUTLASS (version
2.9) and TensorRT (PyTorch-TensorRT container Release 22.06).

Comparisons to Machine Learning Compilers. Figure 10 shows
the comparisons to AMOS and TVM. TVM [9] works well on less
compute-intensive workloads (e.g.DEP), but has poor performance
on heavy ones (e.g.C2D, C3D, GMM) due to the limited Tensor Core
support. AMOS [49] can use Tensor Core for every workload but
not doing as well as TensorIR. Overall, TensorIR brings up to 7.5×
number of improvement over existing machine learning compila-
tion solutions. These improvements come from better abstraction
and automatic scheduling that leverages tensor compute intrinsics
and corresponding data movements.

Comparisons to Platform Specific Libraries. Figure 11 shows the
comparisons of TensorIR to two platform specific solutions: CUT-
LASS [23] and TensorRT [32]. TensorIR outperforms the baselines
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Figure 10: Single operator comparison to existing machine
learning compilers on Nvidia GPU. TensorIR brings up to
7.5x speed across workloads.
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Figure 11: Single operator comparison to platform-specific
libraries.We did not show the numbers of CUTLASS onDEP,
GRP, and T2D as the library does not support them. Ten-
sorIRoutperforms the baselines onC1D,C2D,DEP, T2D, and
DIL by up to 13.9x and gets to more than 75% throughput on
C3D, GMM, and GRP.

on C1D, C2D, DEP, T2D, and DIL by up to 13.9×. These results
shows the advantage of automatic optimizations provided by Ten-
sorIR. Notably, TensorIR gets to more than 75% on C3D, GRP an
GMM. These results show that even on workloads that are inten-
sively optimized by dedicated engineering teams, TensorIR can
still get close to or match existing vendor-specific solutions. We
expect the remaining gap continues to close as we bring additional
insights from these libraries to TensorIR. In all cases, the baseline
solutions are optimized by dedicated engineering teams, while Ten-
sorIR enables automated compilation for a given tensor intrinsic
declaration.

Highlight
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5.2 End-to-end Model Evaluation
In this section, we evaluate the impacts that TensorIR can bring
to end-to-end model execution. We evaluate our solutions on four
widely-used models [13, 14, 18, 19] on on NVIDIA RTX 3080. We
include TVM and AMOS as machine learning compiler baselines.
Additionally, we also include PyTorch (version 1.13.0.dev20220612)
as a framework reference point. Finally, we include TensorRT, which
is a vendor-specific solution that is heavily optimized by engineer-
ing teams at Nvidia.

The results are shown in Figure 12. TensorIR outperforms Py-
Torch, TVM, and AMOS by 1.2 − 8.8×. Additionally, TensorIR
brings 30% better performance on MobileNet V2 comparing to
TensorRT, and achieves the 88% − 100% throughput on ResNet50
and BERT_large. Additionally, TensorIR can automatically support
emerging models such as Vision Transformer, which TensorRT does
not yet support. These results show that our abstraction and the
automatic scheduler can bring close or even better performance
than the best effort libraries on common machine learning mod-
els. Additionally, the automated solution enables us to bring faster
support for emerging models.

Tuning time is an important factor of practical usability for
search based automatic deep learning compilers. We compare the
end-to-end tuning time of TVM and TensorIR which is shown in
Table 1. Our framework tunes up to 2x faster compared with TVM,
and this improvement comes from two aspects. Firstly, hardware
profiling contributes the most to the tuning time, and auto ten-
sorization of TensorIR generates faster programs compared with
TVM due to the utilization of Tensor Core and hence the profiling
time is less accordingly. Secondly, our divide and conquer approach
divides and isolates the problem space into outer loop nests and
inner body. The inner body is tensorized with hardware intrinsics
and we search over the loop transformations of outer loops, which
results in a smaller search space. The search time can be tolerated
when we deploy these models to many devices for months in pro-
duction. TensorIR can eliminate search time further by caching
historical cost models and search records. So no search is needed
to build a model for an operator already tuned.

5.3 ARM CPU Evaluation
The last two subsections evaluate TensorIR on an Nvidia GPU.
In this section, we study how easy it is to generalize TensorIR
to different platforms. We evaluate results on an ARM platform
by providing the description with 8-bit integer dot(sdot). This in-
struction is different from the Tensor Core used in the last two
subsections. Importantly, we use the same TensorIR framework by
providing the new description of the tensor intrinsic to the system.
The evaluations are done on an AWS Graviton2 CPU.

Single Operator Results. We evaluate the results on two com-
monly used operators: C2D and GMM. We include TVM as a ma-
chine learning compiler baseline and ARMComputeLib [3] as a
platform-specific library baseline. The results are shown in Fig-
ure 13. TensorIR achieves up to 12.5× speed up compared with
TVM thanks to the ability to leverage native hardware accelera-
tion. In the meantime, TensorIR reaches 85% − 105% throughput of
ARMComputeLib [3], showing our ability to get to the same level
of performance as vendor-specific solutions on this platform.
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Figure 12: End-to-End model evaluations on NVIDIA GPU.
TensorIR significantly outperforms existing machine learn-
ing compilation solutions and achieves similar or better
throughputs on popular networks compared with the infer-
ence libraries on GPUs. TensorIR get better performance on
ViT, an emergingmodel that TensorRT does not yet support.
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Figure 13: Single operator evaluations on ARM CPU. Ten-
sorIR get up to 12.6x faster than TVM due to the use of na-
tive tensor instrinsic acceleration. It also gets to the same
level of performance as heavily optimized platform specific
library (ArmComputeLib).

Tuning time
Model TVM (min) TensorIR (min)
ResNet-50 308 156
MobileNet-v2 292 261
BERT 410 189
ViT 247 145

Table 1: Tuning time comparison of end-to-end models on
NVIDIA GPU. TensorIR tunes up to 2x faster.

End-to-End Results. Finally, we evaluate the end-to-end neural
network executions on this platform. Our baselines include PyTorch
and TVM. We achieve up to 2.3× on this platform in Figure 14.
Notably, PyTorch contains a specialized quantized model support
with QNNPACK [28] backend. However, QNNPACK has not yet
added sdot support. This result alludes to the maintenance cost for
these frameworks to keep up with hardware changes. TensorIR can
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Figure 14: End-to-end evaluation results on ARM CPU. Ten-
sorIR outperform with 1.2x–2.5x than PyTorch and TVM.

help to reduce the maintenance burden through automation and
still bring competitive performance to hand-optimized systems.

6 RELATEDWORKS
Deep learning frameworks [1, 8, 33] optimize deep neural networks
by invoking vendor optimized libraries (e.g., cuDNN [11], MKL-
DNN [20], TensorRT [32], ArmComputeLibrary [3]). Libraries have
engineering development costs and are specific to a particular hard-
ware. TensorIR complements library developments to enable better
coverage and reduce development costs by automatically providing
comparable performance with vendor libraries. These frameworks
can leverage TensorIR to generate optimized tensorized programs
for various hardware backends.

Compute-intensive linear algebra operators such as matrix mul-
tiplication and dot products has been a long-standing optimization
target in HPC community (e.g., CUTLASS [23]) due to their im-
portance in scientific computation. The divide-and-conquer is a
typical optimization technique in HPC and ML engineering. Ten-
sorIR takes these ideas and generalizes them to an abstraction that
allows automatic tensorization.

Machine learning and tensor compilers introduce different ab-
stractions for tensor programs. Halide [35] and TVM [9] use a
scheduling language that can describe loop optimization primi-
tives of loop nests with a scalar body. Tensor Comprehensions [43],
Tiramisu [5] and MLIR/Affine [26] use polyhedral model [42] to
analyze loop nest dependencies. These works optimize loop nests
with scalar computation in a bottom-up way. Fireiron [17] and
Stripe [46] use nested polyhedral structures to model tensor pro-
grams in a top-down fashion. TensorIR combines insights from
both approaches and generalizes the representation to tensorized
programs. IREE [40] is a compiler chain for end-to-end compilation
flow which utilizes platform-specific optimization pipelines. Ten-
sorIR focuses on automating the tensorization process to generate
optimized code for multiple platforms without human intervention.
TACO [12, 24, 38] is a compiler for sparse tensor algebra. Cor-
tex [15] generalized tensor compilation to recursive computations.
Our work is orthogonal to these efforts. We believe the TensorIR
abstraction can be combined with insights from these works in the
future to enable an even broader range of computations.

Automation is an essential topic in machine learning compila-
tion and tensor program optimization. AutoTVM [10] introduced a

learning-based approach to optimize tensor programs via a learned
cost model and template-guided search. Triton [41] introduces a
tile-based template representation for effective program optimiza-
tion. FlexTensor [50] automatically generates the template. Halide
builds an automatic scheduler using Monte-Carlo tree search [2].
Ansor [48] improves automatic scheduling using a hierarchical
search space. Our automatic scheduling algorithm takes lessons
from these approaches and generalizes them to tensorized compu-
tation best for domain-specific hardware acceleration.

Auto-vectorization [25, 36] is a long-standing topic in compiler
research. Tensorization can be viewed as a generalization of the
vectorization problem to enable tensor intrinsic in modern accel-
erators [4, 21, 30, 31]. There are some existing works[6, 45, 47, 49]
on this topic. AKG [47] uses the polyhedral method to explore
tensorized search space, UNIT [45] introduces a generic flow for
tensorization, while AMOS [49] enables automatic mapping to ten-
sorized intrinsic through tensor expression. Our method generalizes
these previous approaches by proposing a novel abstraction for ten-
sorization computation and jointly performing tensorization along
with other optimizations. TensorIR serves as a foundation to further
develop tensorization-aware automatic scheduling methods.

7 CONCLUSION
We propose TensorIR, an abstraction for automatic tensorized pro-
gram optimization. We design a key abstraction called block that
can isolate tensorized computations and provide effective transfor-
mation primitives for program optimization. We build an automatic
scheduling algorithm that performs tensorization jointly with other
optimizations and generates performant programs. We hope this
work will encourage additional studies of tensorized program opti-
mization and provide new opportunities for hardware and software
specialization.
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